About the Project

Laplace method


(0.001 seconds)

11—20 of 21 matching pages

11: Bibliography B
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • P. Boalch (2005) From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3) 90 (1), pp. 167–208.
  • R. W. Butler and A. T. A. Wood (2002) Laplace approximations for hypergeometric functions with matrix argument. Ann. Statist. 30 (4), pp. 1155–1177.
  • R. W. Butler and A. T. A. Wood (2003) Laplace approximation for Bessel functions of matrix argument. J. Comput. Appl. Math. 155 (2), pp. 359–382.
  • 12: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • J. Segura (1998) A global Newton method for the zeros of cylinder functions. Numer. Algorithms 18 (3-4), pp. 259–276.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • A. Sidi (2003) Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, Vol. 10, Cambridge University Press, Cambridge.
  • 13: Frank W. J. Olver
    In 1945–1961 he was a founding member of the Mathematics Division and Head of the Numerical Methods Section at the National Physical Laboratory, Teddington, U. … Having witnessed the birth of the computer age firsthand (as a colleague of Alan Turing at NPL, for example), Olver is also well known for his contributions to the development and analysis of numerical methods for computing special functions. … In a review of that volume, Jet Wimp of Drexel University said that the papers “exemplify a redoubtable mathematical talent, the work of a man who has done more than almost anyone else in the 20th century to bestow on the discipline of applied mathematics the elegance and rigor that its earliest practitioners, such as Gauss and Laplace, would have wished for it. …
  • 14: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992a) Integrals and Series: Direct Laplace Transforms, Vol. 4. Gordon and Breach Science Publishers, New York.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992b) Integrals and Series: Inverse Laplace Transforms, Vol. 5. Gordon and Breach Science Publishers, New York.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 15: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • M. H. Halley, D. Delande, and K. T. Taylor (1993) The combination of R -matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B 26 (12), pp. 1775–1790.
  • R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • 16: Bibliography O
  • F. Oberhettinger and L. Badii (1973) Tables of Laplace Transforms. Springer-Verlag, Berlin-New York.
  • A. M. Odlyzko (1995) Asymptotic Enumeration Methods. In Handbook of Combinatorics, Vol. 2, L. Lovász, R. L. Graham, and M. Grötschel (Eds.), pp. 1063–1229.
  • T. Oliveira e Silva (2006) Computing π ( x ) : The combinatorial method. Revista do DETUA 4 (6), pp. 759–768.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1950) A new method for the evaluation of zeros of Bessel functions and of other solutions of second-order differential equations. Proc. Cambridge Philos. Soc. 46 (4), pp. 570–580.
  • 17: Bibliography T
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (1992b) Asymptotic inversion of the incomplete beta function. J. Comput. Appl. Math. 41 (1-2), pp. 145–157.
  • N. M. Temme (2015) Asymptotic Methods for Integrals. Series in Analysis, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • J. F. Traub (1964) Iterative Methods for the Solution of Equations. Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • E. O. Tuck (1964) Some methods for flows past blunt slender bodies. J. Fluid Mech. 18, pp. 619–635.
  • 18: Bibliography G
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • B. Guo (1998) Spectral Methods and Their Applications. World Scientific Publishing Co. Inc., River Edge, NJ-Singapore.
  • 19: Bibliography W
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 1123–1127.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • R. Wong and M. Wyman (1974) The method of Darboux. J. Approximation Theory 10 (2), pp. 159–171.
  • R. Wong and Y. Zhao (2005) On a uniform treatment of Darboux’s method. Constr. Approx. 21 (2), pp. 225–255.
  • 20: Bibliography
  • G. E. Andrews (1996) Pfaff’s method II: Diverse applications. J. Comput. Appl. Math. 68 (1-2), pp. 15–23.
  • T. M. Apostol and H. S. Zuckerman (1951) On magic squares constructed by the uniform step method. Proc. Amer. Math. Soc. 2 (4), pp. 557–565.
  • G. B. Arfken and H. J. Weber (2005) Mathematical Methods for Physicists. 6th edition, Elsevier, Oxford.
  • V. I. Arnol d (1997) Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, New York.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.