About the Project

Lamé equation

AdvancedHelp

(0.002 seconds)

11—20 of 39 matching pages

11: 31.8 Solutions via Quadratures
β–ΊFor 𝐦 = ( m 0 , 0 , 0 , 0 ) , these solutions reduce to Hermite’s solutions (Whittaker and Watson (1927, §23.7)) of the Lamé equation in its algebraic form. …
12: 29.13 Graphics
β–Ί
§29.13(i) Eigenvalues for Lamé Polynomials
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 29.13.4: a 4 m ⁑ ( k 2 ) , b 4 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 , 3 , 4 ( a ’s), m = 1 , 2 , 3 , 4 ( b ’s). Magnify
β–Ί
§29.13(ii) Lamé Polynomials: Real Variable
β–Ί
§29.13(iii) Lamé Polynomials: Complex Variable
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 29.13.23: | 𝑒𝐸 4 1 ⁑ ( x + i ⁒ y , 0.9 ) | for 3 ⁒ K ⁑ x 3 ⁒ K ⁑ , 0 y 2 ⁒ K ⁑ . … Magnify 3D Help
13: 29.18 Mathematical Applications
β–Ί
§29.18(i) Sphero-Conal Coordinates
β–Ί(29.18.5) is the differential equation of spherical Bessel functions (§10.47(i)), and (29.18.6), (29.18.7) agree with the Lamé equation (29.2.1). … β–Ίwhere u 1 , u 2 , u 3 each satisfy the Lamé wave equation (29.11.1). …
14: 29.12 Definitions
§29.12 Definitions
β–Ί
§29.12(i) Elliptic-Function Form
β–ΊThere are eight types of Lamé polynomials, defined as follows: …In consequence they are doubly-periodic meromorphic functions of z . … β–Ί
§29.12(ii) Algebraic Form
15: 29.15 Fourier Series and Chebyshev Series
β–Ί
29.15.7 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
β–Ί
29.15.12 a ν 2 ⁒ m + 1 ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
β–Ί
29.15.17 b ν 2 ⁒ m + 1 ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
β–Ί
29.15.22 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
β–Ί
29.15.27 b ν 2 ⁒ m + 2 ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
16: 31.7 Relations to Other Functions
β–Ίequation (31.2.1) becomes Lamé’s equation with independent variable ΞΆ ; compare (29.2.1) and (31.2.8). The solutions (31.3.1) and (31.3.5) transform into even and odd solutions of Lamé’s equation, respectively. …
17: 29.8 Integral Equations
§29.8 Integral Equations
β–Ί
29.8.2 ΞΌ ⁒ w ⁑ ( z 1 ) ⁒ w ⁑ ( z 2 ) ⁒ w ⁑ ( z 3 ) = 2 ⁒ K ⁑ 2 ⁒ K ⁑ 𝖯 Ξ½ ⁑ ( x ) ⁒ w ⁑ ( z ) ⁒ d z ,
18: Bibliography V
β–Ί
  • H. Volkmer (2004b) Four remarks on eigenvalues of Lamé’s equation. Anal. Appl. (Singap.) 2 (2), pp. 161–175.
  • 19: 29.6 Fourier Series
    β–Ί
    29.6.2 H = 2 ⁒ a ν 2 ⁒ m ⁑ ( k 2 ) ν ⁒ ( ν + 1 ) ⁒ k 2 ,
    β–Ί
    29.6.17 H = 2 ⁒ a ν 2 ⁒ m + 1 ⁑ ( k 2 ) ν ⁒ ( ν + 1 ) ⁒ k 2 ,
    β–Ί
    29.6.32 H = 2 ⁒ b ν 2 ⁒ m + 1 ⁑ ( k 2 ) ν ⁒ ( ν + 1 ) ⁒ k 2 ,
    β–Ί
    29.6.47 H = 2 ⁒ b ν 2 ⁒ m + 2 ⁑ ( k 2 ) ν ⁒ ( ν + 1 ) ⁒ k 2 ,
    20: Bibliography F
    β–Ί
  • M. V. Fedoryuk (1989) The Lamé wave equation. Uspekhi Mat. Nauk 44 (1(265)), pp. 123–144, 248 (Russian).