About the Project

Lamé wave equation

AdvancedHelp

(0.003 seconds)

1—10 of 18 matching pages

1: 29.11 Lamé Wave Equation
§29.11 Lamé Wave Equation
The Lamé (or ellipsoidal) wave equation is given by …
2: 29.18 Mathematical Applications
§29.18(i) Sphero-Conal Coordinates
where u 1 , u 2 , u 3 each satisfy the Lamé wave equation (29.11.1). …
3: Bibliography F
  • M. V. Fedoryuk (1989) The Lamé wave equation. Uspekhi Mat. Nauk 44 (1(265)), pp. 123–144, 248 (Russian).
  • 4: 31.18 Methods of Computation
    The computation of the accessory parameter for the Heun functions is carried out via the continued-fraction equations (31.4.2) and (31.11.13) in the same way as for the Mathieu, Lamé, and spheroidal wave functions in Chapters 2830.
    5: Bibliography S
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • 6: Hans Volkmer
    Volkmer has published numerous papers on special functions, spectral theory, differential equations, and mathematical statistics. …
  • 7: Bibliography V
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • H. Volkmer (2004b) Four remarks on eigenvalues of Lamé’s equation. Anal. Appl. (Singap.) 2 (2), pp. 161–175.
  • 8: Bibliography
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • F. M. Arscott (1964b) Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions. International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • 9: Bibliography I
  • Y. Ikebe (1975) The zeros of regular Coulomb wave functions and of their derivatives. Math. Comp. 29, pp. 878–887.
  • E. L. Ince (1926) Ordinary Differential Equations. Longmans, Green and Co., London.
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • A. Iserles (1996) A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics, No. 15, Cambridge University Press, Cambridge.
  • 10: Bibliography E
  • S. P. EraŠevskaja, E. A. Ivanov, A. A. Pal’cev, and N. D. Sokolova (1973) Tablicy sferoidal’nyh volnovyh funkcii i ih pervyh proizvodnyh. Tom I. Izdat. “Nauka i Tehnika”, Minsk (Russian).
  • S. P. EraŠevskaja, E. A. Ivanov, A. A. Pal’cev, and N. D. Sokolova (1976) Tablicy sferoidal’nyh volnovyh funkcii iih pervyh proizvodnyh. Tom II. Izdat. “Nauka i Tehnika”, Minsk (Russian).
  • A. Erdélyi (1941b) On Lamé functions. Philos. Mag. (7) 31, pp. 123–130.
  • A. Erdélyi (1941c) On algebraic Lamé functions. Philos. Mag. (7) 32, pp. 348–350.
  • A. Erdélyi (1942a) Integral equations for Heun functions. Quart. J. Math., Oxford Ser. 13, pp. 107–112.