About the Project

Laguerre functions

AdvancedHelp

(0.005 seconds)

1—10 of 47 matching pages

1: 35.6 Confluent Hypergeometric Functions of Matrix Argument
Laguerre Form
35.6.3 L ν ( γ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 1 ( ν γ + 1 2 ( m + 1 ) ; 𝐓 ) , ( γ ) , ( γ + ν ) > 1 .
2: 33.22 Particle Scattering and Atomic and Molecular Spectra
The functions ϕ n , ( r ) defined by (33.14.14) are the hydrogenic bound states in attractive Coulomb potentials; their polynomial components are often called associated Laguerre functions; see Christy and Duck (1961) and Bethe and Salpeter (1977). …
3: 17.17 Physical Applications
See Kassel (1995). …
4: Bibliography Y
  • Z. M. Yan (1992) Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, Vol. 138, pp. 239–259.
  • 5: 18.34 Bessel Polynomials
    For the confluent hypergeometric function F 1 1 and the generalized hypergeometric function F 0 2 , the Laguerre polynomial L n ( α ) and the Whittaker function W κ , μ see §16.2(ii), §16.2(iv), (18.5.12), and (13.14.3), respectively.
    18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 ) .
    18.34.7_1 ϕ n ( x ; λ ) = e λ e x ( 2 λ e x ) λ 1 2 y n ( λ 1 e x ; 2 2 λ ) / n ! = ( 1 ) n e λ e x ( 2 λ e x ) λ n 1 2 L n ( 2 λ 2 n 1 ) ( 2 λ e x ) = ( 2 λ ) 1 2 e x / 2 W λ , n + 1 2 λ ( 2 λ e x ) / n ! , n = 0 , 1 , , N = λ 3 2 , λ > 1 2 ,
    expressed in terms of Romanovski–Bessel polynomials, Laguerre polynomials or Whittaker functions, we have …
    6: 18.3 Definitions
    Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
    Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
    7: 18.17 Integrals
    18.17.14 x α + μ L n ( α + μ ) ( x ) Γ ( α + μ + n + 1 ) = 0 x y α L n ( α ) ( y ) Γ ( α + n + 1 ) ( x y ) μ 1 Γ ( μ ) d y , μ > 0 , x > 0 .
    18.17.15 e x L n ( α ) ( x ) = x e y L n ( α + μ ) ( y ) ( y x ) μ 1 Γ ( μ ) d y , μ > 0 .
    18.17.28_5 0 e x x α L n ( α ) ( x ) e i x y d x = Γ ( α + n + 1 ) ( i y ) n n ! ( 1 i y ) α + n + 1 ,
    18.17.31 0 e a x x ν 2 n L 2 n 1 ( ν 2 n ) ( a x ) cos ( x y ) d x = i ( 1 ) n Γ ( ν ) 2 ( 2 n 1 ) ! y 2 n 1 ( ( a + i y ) ν ( a i y ) ν ) , ν > 2 n 1 , a > 0 ,
    18.17.32 0 e a x x ν 1 2 n L 2 n ( ν 1 2 n ) ( a x ) cos ( x y ) d x = ( 1 ) n Γ ( ν ) 2 ( 2 n ) ! y 2 n ( ( a + i y ) ν + ( a i y ) ν ) , ν > 2 n , a > 0 .
    8: 18.11 Relations to Other Functions
    Laguerre
    18.11.2 L n ( α ) ( x ) = ( α + 1 ) n n ! M ( n , α + 1 , x ) = ( 1 ) n n ! U ( n , α + 1 , x ) = ( α + 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x M n + 1 2 ( α + 1 ) , 1 2 α ( x ) = ( 1 ) n n ! x 1 2 ( α + 1 ) e 1 2 x W n + 1 2 ( α + 1 ) , 1 2 α ( x ) .
    Laguerre
    18.11.6 lim n 1 n α L n ( α ) ( z n ) = 1 z 1 2 α J α ( 2 z 1 2 ) .
    9: 18.10 Integral Representations
    18.10.6 L n ( α ) ( x 2 ) = 2 ( 1 ) n π 1 2 Γ ( α + 1 2 ) n ! 0 0 π ( x 2 r 2 + 2 i x r cos ϕ ) n e r 2 r 2 α + 1 ( sin ϕ ) 2 α d ϕ d r , α > 1 2 .
    Laguerre
    18.10.9 L n ( α ) ( x ) = e x x 1 2 α n ! 0 e t t n + 1 2 α J α ( 2 x t ) d t , α > 1 .
    10: 18.12 Generating Functions
    Laguerre
    18.12.13 ( 1 z ) α 1 exp ( x z z 1 ) = n = 0 L n ( α ) ( x ) z n , | z | < 1 .
    18.12.14 Γ ( α + 1 ) ( x z ) 1 2 α e z J α ( 2 x z ) = n = 0 L n ( α ) ( x ) ( α + 1 ) n z n .