About the Project

Laguerre form

AdvancedHelp

(0.001 seconds)

1—10 of 23 matching pages

1: 35.6 Confluent Hypergeometric Functions of Matrix Argument
Laguerre Form
2: 18.11 Relations to Other Functions
Laguerre
3: 18.7 Interrelations and Limit Relations
18.7.19 H 2 n ( x ) = ( 1 ) n 2 2 n n ! L n ( 1 2 ) ( x 2 ) ,
18.7.20 H 2 n + 1 ( x ) = ( 1 ) n 2 2 n + 1 n ! x L n ( 1 2 ) ( x 2 ) .
§18.7(iii) Limit Relations
Jacobi Laguerre
Laguerre Hermite
4: 3.5 Quadrature
For the choice q n ( x ) = 1 h n L n ( α ) ( x ) the recurrence relation (3.5.30_5) takes the form
5: 18.2 General Orthogonal Polynomials
The generating functions (18.12.13), (18.12.15), (18.23.3), (18.23.4), (18.23.5) and (18.23.7) for Laguerre, Hermite, Krawtchouk, Meixner, Charlier and Meixner–Pollaczek polynomials, respectively, can be written in the form (18.2.45). …
6: 18.17 Integrals
Laguerre
Laguerre
Laguerre
Laguerre
Laguerre
7: 18.15 Asymptotic Approximations
§18.15(iv) Laguerre
Here J ν ( z ) denotes the Bessel function (§10.2(ii)), env J ν ( z ) denotes its envelope (§2.8(iv)), and δ is again an arbitrary small positive constant. … The asymptotic behavior of the classical OP’s as x ± with the degree and parameters fixed is evident from their explicit polynomial forms; see, for example, (18.2.7) and the last two columns of Table 18.3.1. For asymptotic approximations of Jacobi, ultraspherical, and Laguerre polynomials in terms of Hermite polynomials, see López and Temme (1999a). These approximations apply when the parameters are large, namely α and β (subject to restrictions) in the case of Jacobi polynomials, λ in the case of ultraspherical polynomials, and | α | + | x | in the case of Laguerre polynomials. …
8: Bibliography T
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1990a) Asymptotic estimates for Laguerre polynomials. Z. Angew. Math. Phys. 41 (1), pp. 114–126.
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.
  • F. Tu and Y. Yang (2013) Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves. Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
  • 9: 18.39 Applications in the Physical Sciences
    This indicates that the Laguerre polynomials appearing in (18.39.29) are not classical OP’s, and in fact, even though infinite in number for fixed l , do not form a complete set. …
    10: 18.18 Sums
    Laguerre
    Laguerre
    Laguerre
    Laguerre
    Laguerre