Laguerre form
(0.001 seconds)
1—10 of 23 matching pages
1: 35.6 Confluent Hypergeometric Functions of Matrix Argument
…
►
Laguerre Form
…2: 18.11 Relations to Other Functions
…
►
Laguerre
…3: 18.7 Interrelations and Limit Relations
4: 3.5 Quadrature
5: 18.2 General Orthogonal Polynomials
…
►The generating functions (18.12.13), (18.12.15), (18.23.3), (18.23.4), (18.23.5) and (18.23.7) for Laguerre, Hermite, Krawtchouk, Meixner, Charlier and Meixner–Pollaczek polynomials, respectively, can be written in the form (18.2.45).
…
6: 18.17 Integrals
7: 18.15 Asymptotic Approximations
…
►
§18.15(iv) Laguerre
… ►Here denotes the Bessel function (§10.2(ii)), denotes its envelope (§2.8(iv)), and is again an arbitrary small positive constant. … ►The asymptotic behavior of the classical OP’s as with the degree and parameters fixed is evident from their explicit polynomial forms; see, for example, (18.2.7) and the last two columns of Table 18.3.1. ►For asymptotic approximations of Jacobi, ultraspherical, and Laguerre polynomials in terms of Hermite polynomials, see López and Temme (1999a). These approximations apply when the parameters are large, namely and (subject to restrictions) in the case of Jacobi polynomials, in the case of ultraspherical polynomials, and in the case of Laguerre polynomials. …8: Bibliography T
…
►
Laplace type integrals: Transformation to standard form and uniform asymptotic expansions.
Quart. Appl. Math. 43 (1), pp. 103–123.
►
Laguerre polynomials: Asymptotics for large degree.
Technical report
Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
…
►
Asymptotic estimates for Laguerre polynomials.
Z. Angew. Math. Phys. 41 (1), pp. 114–126.
…
►
Sul comportamento asintotico dell’-esimo polinomio di Laguerre nell’intorno dell’ascissa
.
Comment. Math. Helv. 22, pp. 150–167.
…
►
Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves.
Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
…
9: 18.39 Applications in the Physical Sciences
…
►This indicates that the Laguerre polynomials appearing in (18.39.29) are not classical OP’s, and in fact, even though infinite in number for fixed , do not form a complete set.
…