About the Project

Lagrange inversion theorem

AdvancedHelp

(0.002 seconds)

11—20 of 255 matching pages

11: 22.18 Mathematical Applications
Lemniscate
Inversely: … See Akhiezer (1990, Chapter 8) and McKean and Moll (1999, Chapter 2) for discussions of the inverse mapping. …
§22.18(iv) Elliptic Curves and the Jacobi–Abel Addition Theorem
12: Bibliography B
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • J. Berrut and L. N. Trefethen (2004) Barycentric Lagrange interpolation. SIAM Rev. 46 (3), pp. 501–517.
  • M. V. Berry (1976) Waves and Thom’s theorem. Advances in Physics 25 (1), pp. 1–26.
  • J. M. Blair, C. A. Edwards, and J. H. Johnson (1976) Rational Chebyshev approximations for the inverse of the error function. Math. Comp. 30 (136), pp. 827–830.
  • 13: 35.2 Laplace Transform
    Inversion Formula
    Convolution Theorem
    14: Bibliography G
  • W. Gautschi (1992) On mean convergence of extended Lagrange interpolation. J. Comput. Appl. Math. 43 (1-2), pp. 19–35.
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 15: 4.27 Sums
    §4.27 Sums
    For sums of trigonometric and inverse trigonometric functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §§14–42), Oberhettinger (1973), and Prudnikov et al. (1986a, Chapter 5).
    16: 19.26 Addition Theorems
    §19.26 Addition Theorems
    19.26.11 R C ( x + λ , y + λ ) + R C ( x + μ , y + μ ) = R C ( x , y ) ,
    The equations inverse to z + λ = ( z + x ) ( z + y ) and the two other equations obtained by permuting x , y , z (see (19.26.19)) are …
    19.26.25 R C ( x , y ) = 2 R C ( x + λ , y + λ ) , λ = y + 2 x y .
    19.26.27 R C ( x 2 , x 2 θ ) = 2 R C ( s 2 , s 2 θ ) , s = x + x 2 θ , θ x 2 or s 2 .
    17: 3.11 Approximation Techniques
    3.11.6 T n ( x ) = cos ( n arccos x ) , 1 x 1 .
    Laplace Transform Inversion
    Numerical inversion of the Laplace transform (§1.14(iii)) … If J = n + 1 , then p n ( x ) is the Lagrange interpolation polynomial for the set x 1 , x 2 , , x J 3.3(i)). … For many applications a spline function is a more adaptable approximating tool than the Lagrange interpolation polynomial involving a comparable number of parameters; see §3.3(i), where a single polynomial is used for interpolating f ( x ) on the complete interval [ a , b ] . …
    18: Bibliography L
  • J. Lagrange (1770) Démonstration d’un Théoréme d’Arithmétique. Nouveau Mém. Acad. Roy. Sci. Berlin, pp. 123–133 (French).
  • 19: 27.15 Chinese Remainder Theorem
    §27.15 Chinese Remainder Theorem
    The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    20: 4.47 Approximations
    §4.47 Approximations
    §4.47(i) Chebyshev-Series Expansions
    Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …