About the Project

Lagrange%20inversion%20theorem

AdvancedHelp

(0.002 seconds)

1—10 of 321 matching pages

1: 4.37 Inverse Hyperbolic Functions
§4.37 Inverse Hyperbolic Functions
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Other Inverse Functions
2: 4.23 Inverse Trigonometric Functions
§4.23 Inverse Trigonometric Functions
Inverse Sine
Inverse Cosine
Inverse Tangent
Other Inverse Functions
3: 22.15 Inverse Functions
§22.15 Inverse Functions
§22.15(i) Definitions
Each of these inverse functions is multivalued. The principal values satisfy …
4: 18.40 Methods of Computation
Stieltjes Inversion via (approximate) Analytic Continuation
Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …
Histogram Approach
In what follows this is accomplished in two ways: i) via the Lagrange interpolation of §3.3(i) ; and ii) by constructing a pointwise continued fraction, or PWCF, as follows: … Comparisons of the precisions of Lagrange and PWCF interpolations to obtain the derivatives, are shown in Figure 18.40.2. …
5: 3.3 Interpolation
§3.3 Interpolation
§3.3(i) Lagrange Interpolation
With an error term the Lagrange interpolation formula for f is given by …
§3.3(ii) Lagrange Interpolation with Equally-Spaced Nodes
6: 20 Theta Functions
Chapter 20 Theta Functions
7: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • J. J. Duistermaat (1974) Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27, pp. 207–281.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 8: 3.4 Differentiation
    §3.4(i) Equally-Spaced Nodes
    The Lagrange ( n + 1 ) -point formula is …
    B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
    B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
    9: 1.10 Functions of a Complex Variable
    Picard’s Theorem
    §1.10(iv) Residue Theorem
    §1.10(vii) Inverse Functions
    Lagrange Inversion Theorem
    Extended Inversion Theorem
    10: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • J. Berrut and L. N. Trefethen (2004) Barycentric Lagrange interpolation. SIAM Rev. 46 (3), pp. 501–517.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.