About the Project
NIST

Kummer-type transformations

AdvancedHelp

(0.002 seconds)

4 matching pages

1: 16.6 Transformations of Variable
16.6.2 F 2 3 ( a , 2 b - a - 1 , 2 - 2 b + a b , a - b + 3 2 ; z 4 ) = ( 1 - z ) - a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a - b + 3 2 ; - 27 z 4 ( 1 - z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
2: Bibliography P
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • 3: 16.4 Argument Unity
    §16.4(iii) Identities
    4: Bibliography M
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.