About the Project

Kummer transformation

AdvancedHelp

(0.001 seconds)

11—20 of 24 matching pages

11: Bibliography M
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • 12: Bibliography C
  • J. Choi and A. K. Rathie (2013) An extension of a Kummer’s quadratic transformation formula with an application. Proc. Jangjeon Math. Soc. 16 (2), pp. 229–235.
  • 13: 18.17 Integrals
    §18.17(v) Fourier Transforms
    Jacobi
    Ultraspherical
    §18.17(vi) Laplace Transforms
    §18.17(vii) Mellin Transforms
    14: 13.4 Integral Representations
    13.4.16 𝐌 ( a , b , z ) = 1 2 π i Γ ( a ) i i Γ ( a + t ) Γ ( t ) Γ ( b + t ) z t d t , | ph z | < 1 2 π ,
    13.4.17 U ( a , b , z ) = z a 2 π i i i Γ ( a + t ) Γ ( 1 + a b + t ) Γ ( t ) Γ ( a ) Γ ( 1 + a b ) z t d t , | ph z | < 3 2 π ,
    13.4.18 U ( a , b , z ) = z 1 b e z 2 π i i i Γ ( b 1 + t ) Γ ( t ) Γ ( a + t ) z t d t , | ph z | < 1 2 π ,
    15: Bibliography T
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • 16: 9.10 Integrals
    9.10.14 0 e p t Ai ( t ) d t = e p 3 / 3 ( 1 3 p F 1 1 ( 1 3 ; 4 3 ; 1 3 p 3 ) 3 4 / 3 Γ ( 4 3 ) + p 2 F 1 1 ( 2 3 ; 5 3 ; 1 3 p 3 ) 3 5 / 3 Γ ( 5 3 ) ) , p .
    17: 15.10 Hypergeometric Differential Equation
    The three pairs of fundamental solutions given by (15.10.2), (15.10.4), and (15.10.6) can be transformed into 18 other solutions by means of (15.8.1), leading to a total of 24 solutions known as Kummer’s solutions. …
    18: Bibliography D
  • B. Davies (1984) Integral Transforms and their Applications. 2nd edition, Applied Mathematical Sciences, Vol. 25, Springer-Verlag, New York.
  • A. Deaño, J. Segura, and N. M. Temme (2010) Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233 (6), pp. 1505–1510.
  • S. R. Deans (1983) The Radon Transform and Some of Its Applications. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • L. Debnath and D. Bhatta (2015) Integral transforms and their applications. Third edition, CRC Press, Boca Raton, FL.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • 19: Bibliography Z
  • A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995) Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach. Ann. Numer. Math. 2 (1-4), pp. 457–472.
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • Q. Zheng (1997) Generalized Watson Transforms and Applications to Group Representations. Ph.D. Thesis, University of Vermont, Burlington,VT.
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • 20: Errata
  • Paragraph Confluent Hypergeometric Functions (in §7.18(iv))

    A note about the multivalued nature of the Kummer confluent hypergeometric function of the second kind U on the right-hand side of (7.18.10) was inserted.

  • Section 1.14

    There have been extensive changes in the notation used for the integral transforms defined in §1.14. These changes are applied throughout the DLMF. The following table summarizes the changes.

    Transform New Abbreviated Old
    Notation Notation Notation
    Fourier ( f ) ( x ) f ( x )
    Fourier Cosine c ( f ) ( x ) c f ( x )
    Fourier Sine s ( f ) ( x ) s f ( x )
    Laplace ( f ) ( s ) f ( s ) ( f ( t ) ; s )
    Mellin ( f ) ( s ) f ( s ) ( f ; s )
    Hilbert ( f ) ( s ) f ( s ) ( f ; s )
    Stieltjes 𝒮 ( f ) ( s ) 𝒮 f ( s ) 𝒮 ( f ; s )

    Previously, for the Fourier, Fourier cosine and Fourier sine transforms, either temporary local notations were used or the Fourier integrals were written out explicitly.

  • Equations (13.2.9), (13.2.10)

    There were clarifications made in the conditions on the parameter a in U ( a , b , z ) of those equations.

  • Equation (13.2.7)
    13.2.7 U ( m , b , z ) = ( 1 ) m ( b ) m M ( m , b , z ) = ( 1 ) m s = 0 m ( m s ) ( b + s ) m s ( z ) s

    The equality U ( m , b , z ) = ( 1 ) m ( b ) m M ( m , b , z ) has been added to the original equation to express an explicit connection between the two standard solutions of Kummer’s equation. Note also that the notation a = n has been changed to a = m .

    Reported 2015-02-10 by Adri Olde Daalhuis.

  • Equation (13.2.8)
    13.2.8 U ( a , a + n + 1 , z ) = ( 1 ) n ( 1 a n ) n z a + n M ( n , 1 a n , z ) = z a s = 0 n ( n s ) ( a ) s z s

    The equality U ( a , a + n + 1 , z ) = ( 1 ) n ( 1 a n ) n z a + n M ( n , 1 a n , z ) has been added to the original equation to express an explicit connection between the two standard solutions of Kummer’s equation.

    Reported 2015-02-10 by Adri Olde Daalhuis.