About the Project

Kummer equation

AdvancedHelp

(0.002 seconds)

1—10 of 60 matching pages

1: 13.2 Definitions and Basic Properties
Kummer’s Equation
13.2.1 z d 2 w d z 2 + ( b z ) d w d z a w = 0 .
Standard Solutions
§13.2(v) Numerically Satisfactory Solutions
2: 13.3 Recurrence Relations and Derivatives
13.3.4 b M ( a , b , z ) b M ( a 1 , b , z ) z M ( a , b + 1 , z ) = 0 ,
13.3.7 U ( a 1 , b , z ) + ( b 2 a z ) U ( a , b , z ) + a ( a b + 1 ) U ( a + 1 , b , z ) = 0 ,
13.3.9 U ( a , b , z ) a U ( a + 1 , b , z ) U ( a , b 1 , z ) = 0 ,
Kummer’s differential equation (13.2.1) is equivalent to …
13.3.14 ( a + 1 ) z U ( a + 2 , b + 2 , z ) + ( z b ) U ( a + 1 , b + 1 , z ) U ( a , b , z ) = 0 .
3: 13.6 Relations to Other Functions
13.6.1 M ( a , a , z ) = e z ,
13.6.4 U ( a , a + 1 , z ) = z a .
13.6.18 U ( 1 2 1 2 n , 3 2 , z 2 ) = 2 n z 1 H n ( z ) .
4: 13.14 Definitions and Basic Properties
Whittaker’s Equation
This equation is obtained from Kummer’s equation (13.2.1) via the substitutions W = e 1 2 z z 1 2 + μ w , κ = 1 2 b a , and μ = 1 2 b 1 2 . … Standard solutions are: … The principal branches correspond to the principal branches of the functions z 1 2 + μ and U ( 1 2 + μ κ , 1 + 2 μ , z ) on the right-hand sides of the equations (13.14.2) and (13.14.3); compare §4.2(i). …
5: 13.12 Products
13.12.1 M ( a , b , z ) M ( a , b , z ) + a ( a b ) z 2 b 2 ( 1 b 2 ) M ( 1 + a , 2 + b , z ) M ( 1 a , 2 b , z ) = 1 .
6: 13.4 Integral Representations
13.4.1 𝐌 ( a , b , z ) = 1 Γ ( a ) Γ ( b a ) 0 1 e z t t a 1 ( 1 t ) b a 1 d t , b > a > 0 ,
13.4.2 𝐌 ( a , b , z ) = 1 Γ ( b c ) 0 1 𝐌 ( a , c , z t ) t c 1 ( 1 t ) b c 1 d t , b > c > 0 ,
13.4.3 𝐌 ( a , b , z ) = z 1 2 1 2 b Γ ( a ) 0 e t t a 1 2 b 1 2 J b 1 ( 2 z t ) d t , a > 0 .
13.4.4 U ( a , b , z ) = 1 Γ ( a ) 0 e z t t a 1 ( 1 + t ) b a 1 d t , a > 0 , | ph z | < 1 2 π ,
13.4.13 𝐌 ( a , b , z ) = z 1 b 2 π i ( 0 + , 1 + ) e z t t b ( 1 1 t ) a d t , | ph z | < 1 2 π .
7: 13.11 Series
13.11.1 M ( a , b , z ) = Γ ( a 1 2 ) e 1 2 z ( 1 4 z ) 1 2 a s = 0 ( 2 a 1 ) s ( 2 a b ) s ( b ) s s ! ( a 1 2 + s ) I a 1 2 + s ( 1 2 z ) , a + 1 2 , b 0 , 1 , 2 , ,
13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
13.11.3 𝐌 ( a , b , z ) = e 1 2 z s = 0 A s ( b 2 a ) 1 2 ( 1 b s ) ( 1 2 z ) 1 2 ( 1 b + s ) J b 1 + s ( 2 z ( b 2 a ) ) ,
8: 13.8 Asymptotic Approximations for Large Parameters
13.8.5 U ( a , b , z ) b 1 2 a e 1 4 ζ 2 b ( λ ( λ 1 ζ ) a 1 U ( a 1 2 , ζ b ) ( λ ( λ 1 ζ ) a 1 ( ζ λ 1 ) a ) U ( a 3 2 , ζ b ) ζ b )
13.8.6 M ( a , b , b ) = π ( b 2 ) 1 2 a ( 1 Γ ( 1 2 ( a + 1 ) ) + ( a + 1 ) 8 / b 3 Γ ( 1 2 a ) + O ( 1 b ) ) ,
13.8.7 U ( a , b , b ) = π ( 2 b ) 1 2 a ( 1 Γ ( 1 2 ( a + 1 ) ) ( a + 1 ) 8 / b 3 Γ ( 1 2 a ) + O ( 1 b ) ) .
13.8.17 M ( a , b , z ) = e ν z Γ ( b ) Γ ( a ) ( 1 + ( 1 ν ) ( 1 + 6 ν 2 z 2 ) 12 a + O ( 1 min ( a 2 , b 2 ) ) ) ,
13.8.18 U ( a , b + 1 , z ) = z b e ( 1 ν ) z Γ ( b ) Γ ( a ) ( 1 + ν z ( 1 ν ) ( 2 ν z ) 2 a + O ( 1 min ( a 2 , b 2 ) ) ) , z > 0 ,
9: 15.10 Hypergeometric Differential Equation
§15.10(ii) Kummer’s 24 Solutions and Connection Formulas
15.10.17 w 3 ( z ) = Γ ( 1 c ) Γ ( a + b c + 1 ) Γ ( a c + 1 ) Γ ( b c + 1 ) w 1 ( z ) + Γ ( c 1 ) Γ ( a + b c + 1 ) Γ ( a ) Γ ( b ) w 2 ( z ) ,
15.10.18 w 4 ( z ) = Γ ( 1 c ) Γ ( c a b + 1 ) Γ ( 1 a ) Γ ( 1 b ) w 1 ( z ) + Γ ( c 1 ) Γ ( c a b + 1 ) Γ ( c a ) Γ ( c b ) w 2 ( z ) ,
15.10.21 w 1 ( z ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) w 3 ( z ) + Γ ( c ) Γ ( a + b c ) Γ ( a ) Γ ( b ) w 4 ( z ) ,
15.10.25 w 1 ( z ) = Γ ( c ) Γ ( b a ) Γ ( b ) Γ ( c a ) w 5 ( z ) + Γ ( c ) Γ ( a b ) Γ ( a ) Γ ( c b ) w 6 ( z ) ,
10: 13.29 Methods of Computation