About the Project

Krattenthaler formula for determinants

AdvancedHelp

(0.002 seconds)

1—10 of 263 matching pages

1: 1.3 Determinants, Linear Operators, and Spectral Expansions
§1.3(i) Determinants: Elementary Properties
Relationships Between Determinants
§1.3(ii) Special Determinants
Cauchy Determinant
Krattenthaler’s Formula
2: 17.19 Software
  • Krattenthaler (1993). Mathematica.

  • 3: Bibliography K
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • K. Kajiwara and Y. Ohta (1998) Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31 (10), pp. 2431–2446.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 4: 1.2 Elementary Algebra
    The Determinant
    The matrix 𝐀 has a determinant, det ( 𝐀 ) , explored further in §1.3, denoted, in full index form, as …where det ( 𝐀 ) is defined by the Leibniz formulaA square matrix 𝑨 is singular if det ( 𝐀 ) = 0 , otherwise it is non-singular. …
    Relation of Eigenvalues to the Determinant and Trace
    5: 23.10 Addition Theorems and Other Identities
    23.10.5 | 1 ( u ) ( u ) 1 ( v ) ( v ) 1 ( w ) ( w ) | = 0 ,
    §23.10(ii) Duplication Formulas
    §23.10(iii) n -Tuple Formulas
    6: 18.2 General Orthogonal Polynomials
    §18.2(v) Christoffel–Darboux Formula
    Confluent Form
    §18.2(ix) Moments
    It is to be noted that, although formally correct, the results of (18.2.30) are of little utility for numerical work, as Hankel determinants are notoriously ill-conditioned. …
    Degree lowering and raising differentiation formulas and structure relations
    7: Bibliography S
  • N. J. A. Sloane (2003) The On-Line Encyclopedia of Integer Sequences. Notices Amer. Math. Soc. 50 (8), pp. 912–915.
  • R. Spira (1971) Calculation of the gamma function by Stirling’s formula. Math. Comp. 25 (114), pp. 317–322.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 8: Bibliography V
  • A. J. van der Poorten (1980) Some Wonderful Formulas an Introduction to Polylogarithms. In Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979), R. Ribenboim (Ed.), Queen’s Papers in Pure and Appl. Math., Vol. 54, Kingston, Ont., pp. 269–286.
  • R. Vein and P. Dale (1999) Determinants and Their Applications in Mathematical Physics. Applied Mathematical Sciences, Vol. 134, Springer-Verlag, New York.
  • A. Verma and V. K. Jain (1983) Certain summation formulae for q -series. J. Indian Math. Soc. (N.S.) 47 (1-4), pp. 71–85 (1986).
  • 9: 1.12 Continued Fractions
    Determinant Formula
    10: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    35.7.6 F 1 2 ( a , b c ; 𝐓 ) = | 𝐈 𝐓 | c a b F 1 2 ( c a , c b c ; 𝐓 ) = | 𝐈 𝐓 | a F 1 2 ( a , c b c ; 𝐓 ( 𝐈 𝐓 ) 1 ) = | 𝐈 𝐓 | b F 1 2 ( c a , b c ; 𝐓 ( 𝐈 𝐓 ) 1 ) .
    Gauss Formula
    Reflection Formula