About the Project

Krattenthaler formula

AdvancedHelp

(0.000 seconds)

1—10 of 243 matching pages

1: 17.19 Software
  • Krattenthaler (1993). Mathematica.

  • 2: 1.3 Determinants, Linear Operators, and Spectral Expansions
    Krattenthaler’s Formula
    3: Bibliography K
  • A. A. Kapaev and A. V. Kitaev (1993) Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys. 27 (4), pp. 243–252.
  • S. Karlin and J. L. McGregor (1961) The Hahn polynomials, formulas and an application. Scripta Math. 26, pp. 33–46.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 4: 27.20 Methods of Computation: Other Number-Theoretic Functions
    The recursion formulas (27.14.6) and (27.14.7) can be used to calculate the partition function p ( n ) for n < N . … A recursion formula obtained by differentiating (27.14.18) can be used to calculate Ramanujan’s function τ ( n ) , and the values can be checked by the congruence (27.14.20). …
    5: Howard S. Cohl
    Howard is the project leader for the NIST Digital Repository of Mathematical Formulae seeding and development projects. In this regard, he has been exploring mathematical knowledge management and the digital expression of mostly unambiguous context-free full semantic information for mathematical formulae.
    6: Preface
    Abramowitz and Stegun’s Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables is being completely rewritten with regard to the needs of today. …The authors will review the relevant published literature and produce approximately twice the number of formulas that were contained in the original Handbook. …
    7: 5.5 Functional Relations
    §5.5(ii) Reflection
    5.5.3 Γ ( z ) Γ ( 1 z ) = π / sin ( π z ) , z 0 , ± 1 , ,
    §5.5(iii) Multiplication
    Duplication Formula
    Gauss’s Multiplication Formula
    8: 24.6 Explicit Formulas
    §24.6 Explicit Formulas
    24.6.6 E 2 n = k = 1 2 n ( 1 ) k 2 k 1 ( 2 n + 1 k + 1 ) j = 0 1 2 k 1 2 ( k j ) ( k 2 j ) 2 n .
    24.6.7 B n ( x ) = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) ( x + j ) n ,
    24.6.12 E 2 n = k = 0 2 n 1 2 k j = 0 k ( 1 ) j ( k j ) ( 1 + 2 j ) 2 n .
    9: 27.5 Inversion Formulas
    §27.5 Inversion Formulas
    which, in turn, is the basis for the Möbius inversion formula relating sums over divisors: … Special cases of Möbius inversion pairs are: … Other types of Möbius inversion formulas include: …
    10: Bibliography S
  • N. J. A. Sloane (2003) The On-Line Encyclopedia of Integer Sequences. Notices Amer. Math. Soc. 50 (8), pp. 912–915.
  • R. Spira (1971) Calculation of the gamma function by Stirling’s formula. Math. Comp. 25 (114), pp. 317–322.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..