About the Project

Klein–Gordon equation

AdvancedHelp

(0.002 seconds)

4 matching pages

1: 33.22 Particle Scattering and Atomic and Molecular Spectra
§33.22(iv) KleinGordon and Dirac Equations
The relativistic motion of spinless particles in a Coulomb field, as encountered in pionic atoms and pion-nucleon scattering (Backenstoss (1970)) is described by a KleinGordon equation equivalent to (33.2.1); see Barnett (1981a). … The Coulomb solutions of the Schrödinger and KleinGordon equations are almost always used in the external region, outside the range of any non-Coulomb forces or couplings. …
2: Bibliography C
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 3: Bibliography J
  • L. Jager (1997) Fonctions de Mathieu et polynômes de Klein-Gordon. C. R. Acad. Sci. Paris Sér. I Math. 325 (7), pp. 713–716 (French).
  • M. Jimbo and T. Miwa (1981) Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (3), pp. 407–448.
  • D. S. Jones, M. J. Plank, and B. D. Sleeman (2010) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical and Computational Biology Series, CRC Press, Boca Raton, FL.
  • D. S. Jones and B. D. Sleeman (2003) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Chapman & Hall/CRC, Boca Raton, FL.
  • N. Joshi and A. V. Kitaev (2001) On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107 (3), pp. 253–291.
  • 4: Bibliography B
  • M. N. Barber and B. W. Ninham (1970) Random and Restricted Walks: Theory and Applications. Gordon and Breach, New York.
  • A. R. Barnett (1981b) KLEIN: Coulomb functions for real λ and positive energy to high accuracy. Comput. Phys. Comm. 24 (2), pp. 141–159.
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • P. Boalch (2005) From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3) 90 (1), pp. 167–208.