About the Project

Kelvin functions

AdvancedHelp

(0.002 seconds)

11—20 of 24 matching pages

11: 10.76 Approximations
Kelvin Functions
12: 10.66 Expansions in Series of Bessel Functions
§10.66 Expansions in Series of Bessel Functions
10.66.1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! .
13: 10.1 Special Notation
The main functions treated in this chapter are the Bessel functions J ν ( z ) , Y ν ( z ) ; Hankel functions H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) ; modified Bessel functions I ν ( z ) , K ν ( z ) ; spherical Bessel functions 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) ; Kelvin functions ber ν ( x ) , bei ν ( x ) , ker ν ( x ) , kei ν ( x ) . …For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
14: 10.68 Modulus and Phase Functions
§10.68(i) Definitions
§10.68(ii) Basic Properties
ϕ ν ( x ) = ϕ ν ( x ) + ν π .
§10.68(iii) Asymptotic Expansions for Large Argument
15: 10.73 Physical Applications
§10.73(iii) Kelvin Functions
The analysis of the current distribution in circular conductors leads to the Kelvin functions ber x , bei x , ker x , and kei x . …The McLachlan reference also includes other applications of Kelvin functions. …
16: 10.74 Methods of Computation
Similar observations apply to the computation of modified Bessel functions, spherical Bessel functions, and Kelvin functions. … Similar considerations apply to the spherical Bessel functions and Kelvin functions. …
§10.74(vi) Zeros and Associated Values
17: Bibliography Y
  • A. Young and A. Kirk (1964) Bessel Functions. Part IV: Kelvin Functions. Royal Society Mathematical Tables, Volume 10, Cambridge University Press, Cambridge-New York.
  • 18: 10.77 Software
    §10.77(iv) Bessel Functions–Integer or Half-Integer Order and Complex Arguments, including Kelvin Functions
    19: 10.75 Tables
    §10.75(xi) Kelvin Functions and their Derivatives
  • Young and Kirk (1964) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 10 , 15D; ber n x , bei n x , ker n x , kei n x , modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , 2 , x = 0 ( .01 ) 2.5 , 8S, and n = 0 ( 1 ) 10 , x = 0 ( .1 ) 10 , 7S. Also included are auxiliary functions to facilitate interpolation of the tables for n = 0 ( 1 ) 10 for small values of x . (Concerning the phase functions see §10.68(iv).)

  • Abramowitz and Stegun (1964, Chapter 9) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 5 , 9–10D; x n ( ker n x + ( ber n x ) ( ln x ) ) , x n ( kei n x + ( bei n x ) ( ln x ) ) , n = 0 , 1 , x = 0 ( .1 ) 1 , 9D; modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , x = 0 ( .2 ) 7 , 6D; x e x / 2 M n ( x ) , θ n ( x ) ( x / 2 ) , x e x / 2 N n ( x ) , ϕ n ( x ) + ( x / 2 ) , n = 0 , 1 , 1 / x = 0 ( .01 ) 0.15 , 5D.

  • §10.75(xii) Zeros of Kelvin Functions and their Derivatives
    20: Software Index