About the Project

Kelvin ship-wave pattern

AdvancedHelp

(0.004 seconds)

1—10 of 36 matching pages

1: 36.13 Kelvin’s Ship-Wave Pattern
§36.13 Kelvin’s Ship-Wave Pattern
See accompanying text
Figure 36.13.1: Kelvin’s ship wave pattern, computed from the uniform asymptotic approximation (36.13.8), as a function of x = ρ cos ϕ , y = ρ sin ϕ . Magnify
For further information see Lord Kelvin (1891, 1905) and Ursell (1960, 1994).
2: Bibliography U
  • F. Ursell (1960) On Kelvin’s ship-wave pattern. J. Fluid Mech. 8 (3), pp. 418–431.
  • 3: Bibliography L
  • Lord Kelvin (1891) Popular Lectures and Addresses. Vol. 3, pp. 481–488.
  • Lord Kelvin (1905) Deep water ship-waves. Phil. Mag. 9, pp. 733–757.
  • 4: 10.62 Graphs
    §10.62 Graphs
    See accompanying text
    Figure 10.62.1: ber x , bei x , ber x , bei x , 0 x 8 . Magnify
    See accompanying text
    Figure 10.62.2: ker x , kei x , ker x , kei x , 0 x 8 . Magnify
    See accompanying text
    Figure 10.62.3: e x / 2 ber x , e x / 2 bei x , e x / 2 M ( x ) , 0 x 8 . Magnify
    See accompanying text
    Figure 10.62.4: e x / 2 ker x , e x / 2 kei x , e x / 2 N ( x ) , 0 x 8 . Magnify
    5: 10.61 Definitions and Basic Properties
    §10.61(i) Definitions
    When ν = 0 suffices on ber , bei , ker , and kei are usually suppressed. …
    §10.61(ii) Differential Equations
    §10.61(iii) Reflection Formulas for Arguments
    §10.61(iv) Reflection Formulas for Orders
    6: 10.64 Integral Representations
    §10.64 Integral Representations
    Schläfli-Type Integrals
    10.64.2 bei n ( x 2 ) = ( 1 ) n π 0 π sin ( x sin t n t ) sinh ( x sin t ) d t .
    See Apelblat (1991) for these results, and also for similar representations for ber ν ( x 2 ) , bei ν ( x 2 ) , and their ν -derivatives.
    7: 10.63 Recurrence Relations and Derivatives
    §10.63(i) ber ν x , bei ν x , ker ν x , kei ν x
    Let f ν ( x ) , g ν ( x ) denote any one of the ordered pairs: …
    §10.63(ii) Cross-Products
    Equations (10.63.6) and (10.63.7) also hold when the symbols ber and bei in (10.63.5) are replaced throughout by ker and kei , respectively.
    8: 10.67 Asymptotic Expansions for Large Argument
    §10.67(i) ber ν x , bei ν x , ker ν x , kei ν x , and Derivatives
    The contributions of the terms in ker ν x , kei ν x , ker ν x , and kei ν x on the right-hand sides of (10.67.3), (10.67.4), (10.67.7), and (10.67.8) are exponentially small compared with the other terms, and hence can be neglected in the sense of Poincaré asymptotic expansions (§2.1(iii)). …
    §10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0
    10.67.10 ber x bei x ber x bei x e x 2 2 π x ( 1 2 + 1 8 1 x + 9 64 2 1 x 2 + 39 512 1 x 3 + 75 8192 2 1 x 4 + ) ,
    9: 10.65 Power Series
    §10.65 Power Series
    §10.65(i) ber ν x and bei ν x
    §10.65(ii) ker ν x and kei ν x
    §10.65(iv) Compendia
    For further power series summable in terms of Kelvin functions and their derivatives see Hansen (1975).
    10: 10.70 Zeros
    §10.70 Zeros
    zeros of  ber ν x 2 ( t f ( t ) ) , t = ( m 1 2 ν 3 8 ) π ,
    zeros of  bei ν x 2 ( t f ( t ) ) , t = ( m 1 2 ν + 1 8 ) π ,
    zeros of  ker ν x 2 ( t + f ( t ) ) , t = ( m 1 2 ν 5 8 ) π ,
    zeros of  kei ν x 2 ( t + f ( t ) ) , t = ( m 1 2 ν 1 8 ) π .