About the Project

Julia%20sets

AdvancedHelp

(0.003 seconds)

1—10 of 605 matching pages

1: 3.8 Nonlinear Equations
Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . … It is called a Julia set. In general the Julia set of an analytic function f ( z ) is a fractal, that is, a set that is self-similar. See Julia (1918) and Devaney (1986). …
2: Bibliography J
  • A. Jonquière (1889) Note sur la série n = 1 x n / n s . Bull. Soc. Math. France 17, pp. 142–152 (French).
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
  • 3: 20 Theta Functions
    Chapter 20 Theta Functions
    4: William P. Reinhardt
    Reinhardt firmly believes that the Mandelbrot set is a special function, and notes with interest that the natural boundaries of analyticity of many “more normal” special functions are also fractals. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    5: 36.5 Stokes Sets
    §36.5 Stokes Sets
    §36.5(i) Definitions
    §36.5(ii) Cuspoids
    Elliptic Umbilic Stokes Set (Codimension three)
    §36.5(iv) Visualizations
    6: 10.75 Tables
  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give J 0 ( x ) to 15D, J 1 ( x ) , J 2 ( x ) , Y 0 ( x ) , Y 1 ( x ) to 10D, Y 2 ( x ) to 8D, x = 0 ( .1 ) 17.5 ; Y n ( x ) ( 2 / π ) J n ( x ) ln x , n = 0 , 1 , x = 0 ( .1 ) 2 , 8D; J n ( x ) , Y n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 20 , 5D or 5S; J n ( x ) , Y n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; modulus and phase functions x M n ( x ) , θ n ( x ) x , n = 0 , 1 , 2 , 1 / x = 0 ( .01 ) 0.1 , 8D.

  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Makinouchi (1966) tabulates all values of j ν , m and y ν , m in the interval ( 0 , 100 ) , with at least 29S. These are for ν = 0 ( 1 ) 5 , 10, 20; ν = 3 2 , 5 2 ; ν = m / n with m = 1 ( 1 ) n 1 and n = 3 ( 1 ) 8 , except for ν = 1 2 .

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give e x I n ( x ) , e x K n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 10 ( .2 ) 20 , 8D–10D or 10S; x e x I n ( x ) , ( x / π ) e x K n ( x ) , n = 0 , 1 , 2 , 1 / x = 0 ( .002 ) 0.05 ; K 0 ( x ) + I 0 ( x ) ln x , x ( K 1 ( x ) I 1 ( x ) ln x ) , x = 0 ( .1 ) 2 , 8D; e x I n ( x ) , e x K n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 10 ( .5 ) 20 , 5S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 9–10S.

  • 7: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Fox (1960, Table 3) tabulates 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) , and π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) for 3 2 x 3 / 2 = 0 ( .001 ) 0.05 , together with similar auxiliary functions for negative values of x . Precision is 10D.

  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • 8: 36.4 Bifurcation Sets
    §36.4 Bifurcation Sets
    Bifurcation (Catastrophe) Set for Cuspoids
    Bifurcation (Catastrophe) Set for Umbilics
    K = 1 , fold bifurcation set: …
    §36.4(ii) Visualizations
    9: 25.12 Polylogarithms
    25.12.2 Li 2 ( z ) = 0 z t 1 ln ( 1 t ) d t , z ( 1 , ) .
    25.12.3 Li 2 ( z ) + Li 2 ( z z 1 ) = 1 2 ( ln ( 1 z ) ) 2 , z [ 1 , ) .
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    Sometimes the factor 1 / Γ ( s + 1 ) is omitted. …
    10: 26.2 Basic Definitions
    A permutation is a one-to-one and onto function from a non-empty set to itself. If the set consists of the integers 1 through n , a permutation σ can be thought of as a rearrangement of these integers where the integer in position j is σ ( j ) . … Given a finite set S with permutation σ , a cycle is an ordered equivalence class of elements of S where j is equivalent to k if there exists an = ( j , k ) such that j = σ ( k ) , where σ 1 = σ and σ is the composition of σ with σ 1 . …
    Partition
    A partition of a set S is an unordered collection of pairwise disjoint nonempty sets whose union is S . …