Julia sets
(0.002 seconds)
1—10 of 582 matching pages
1: 3.8 Nonlinear Equations
…
►(More precisely, is the largest of the possible set of indices for (3.8.3).)
…
►For multiple zeros the convergence is linear, but if the multiplicity is known then quadratic convergence can be restored by multiplying the ratio in (3.8.4) by .
…
►It is called a Julia set.
In general the Julia set of an analytic function is a fractal, that is, a set that is self-similar.
See Julia (1918) and Devaney (1986).
…
2: Bibliography J
…
►
Note sur la série
.
Bull. Soc. Math. France 17, pp. 142–152 (French).
…
►
Memoire sur l’itération des fonctions rationnelles.
J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
3: 4.30 Elementary Properties
4: 17.10 Transformations of Functions
5: 17.9 Further Transformations of Functions
6: 36.5 Stokes Sets
§36.5 Stokes Sets
►§36.5(i) Definitions
… ►§36.5(ii) Cuspoids
… ►Elliptic Umbilic Stokes Set (Codimension three)
… ►§36.5(iv) Visualizations
…7: 36.4 Bifurcation Sets
§36.4 Bifurcation Sets
… ►Bifurcation (Catastrophe) Set for Cuspoids
… ►Bifurcation (Catastrophe) Set for Umbilics
… ► , fold bifurcation set: … ►§36.4(ii) Visualizations
…8: 17.8 Special Cases of Functions
9: 21.1 Special Notation
…
►
►
…
►The function is also commonly used; see, for example, Belokolos et al. (1994, §2.5), Dubrovin (1981), and Fay (1973, Chapter 1).
positive integers. | |
… | |
set of all matrices with integer elements. | |
… | |
set of -dimensional vectors with elements in . | |
number of elements of the set . | |
… | |
set of all elements of , modulo elements of . Thus two elements of are equivalent if they are both in and their difference is in . (For an example see §20.12(ii).) | |
… |