Julia sets

(0.002 seconds)

1—10 of 558 matching pages

1: 3.8 Nonlinear Equations
(More precisely, $p$ is the largest of the possible set of indices for (3.8.3).) … For multiple zeros the convergence is linear, but if the multiplicity $m$ is known then quadratic convergence can be restored by multiplying the ratio $f(z_{n})/f^{\prime}(z_{n})$ in (3.8.4) by $m$. … It is called a Julia set. In general the Julia set of an analytic function $f(z)$ is a fractal, that is, a set that is self-similar. See Julia (1918) and Devaney (1986). …
2: Bibliography J
• A. Jonquière (1889) Note sur la série $\sum_{n=1}^{\infty}x^{n}/n^{s}$ . Bull. Soc. Math. France 17, pp. 142–152 (French).
• G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
4: 17.10 Transformations of ${{}_{r}\psi_{r}}$ Functions
17.10.1 ${{}_{2}\psi_{2}}\left({a,b\atop c,d};q,z\right)=\frac{\left(az,d/a,c/b,dq/(abz% );q\right)_{\infty}}{\left(z,d,q/b,cd/(abz);q\right)_{\infty}}{{}_{2}\psi_{2}}% \left({a,abz/d\atop az,c};q,\frac{d}{a}\right),$
17.10.3 ${{}_{8}\psi_{8}}\left({qa^{\frac{1}{2}},-qa^{\frac{1}{2}},c,d,e,f,aq^{-n},q^{-% n}\atop a^{\frac{1}{2}},-a^{\frac{1}{2}},aq/c,aq/d,aq/e,aq/f,q^{n+1},aq^{n+1}}% ;q,\frac{a^{2}q^{2n+2}}{cdef}\right)=\frac{\left(aq,q/a,aq/(cd),aq/(ef);q% \right)_{n}}{\left(q/c,q/d,aq/e,aq/f;q\right)_{n}}\*{{}_{4}\psi_{4}}\left({e,f% ,aq^{n+1}/(cd),q^{-n}\atop aq/c,aq/d,q^{n+1},ef/(aq^{n})};q,q\right),$
17.10.4 ${{}_{2}\psi_{2}}\left({e,f\atop aq/c,aq/d};q,\frac{aq}{ef}\right)=\frac{\left(% q/c,q/d,aq/e,aq/f;q\right)_{\infty}}{\left(aq,q/a,aq/(cd),aq/(ef);q\right)_{% \infty}}\*\sum_{n=-\infty}^{\infty}\frac{(1-aq^{2n})\left(c,d,e,f;q\right)_{n}% }{(1-a)\left(aq/c,aq/d,aq/e,aq/f;q\right)_{n}}\left(\frac{qa^{3}}{cdef}\right)% ^{n}q^{n^{2}}.$
17.10.5 $\frac{\left(aq/b,aq/c,aq/d,aq/e,q/(ab),q/(ac),q/(ad),q/(ae);q\right)_{\infty}}% {\left(fa,ga,f/a,g/a,qa^{2},q/a^{2};q\right)_{\infty}}\*{{}_{8}\psi_{8}}\left(% {qa,-qa,ba,ca,da,ea,fa,ga\atop a,-a,aq/b,aq/c,aq/d,aq/e,aq/f,aq/g};q,\frac{q^{% 2}}{bcdefg}\right)=\frac{\left(q,q/(bf),q/(cf),q/(df),q/(ef),qf/b,qf/c,qf/d,qf% /e;q\right)_{\infty}}{\left(fa,q/(fa),aq/f,f/a,g/f,fg,qf^{2};q\right)_{\infty}% }\*{{}_{8}\phi_{7}}\left({f^{2},qf,-qf,fb,fc,fd,fe,fg\atop f,-f,fq/b,fq/c,fq/d% ,fq/e,fq/g};q,\frac{q^{2}}{bcdefg}\right)+\mathrm{idem}\left(f;g\right).$
17.10.6 $\frac{\left(aq/b,aq/c,aq/d,aq/e,aq/f,q/(ab),q/(ac),q/(ad),q/(ae),q/(af);q% \right)_{\infty}}{\left(ag,ah,ak,g/a,h/a,k/a,qa^{2},q/a^{2};q\right)_{\infty}}% \*{{}_{10}\psi_{10}}\left({qa,-qa,ba,ca,da,ea,fa,ga,ha,ka\atop a,-a,aq/b,aq/c,% aq/d,aq/e,aq/f,aq/g,aq/h,aq/k};q,\frac{q^{2}}{bcdefghk}\right)=\frac{\left(q,q% /(bg),q/(cg),q/(dg),q/(eg),q/(fg),qg/b,qg/c,qg/d,qg/e,qg/f;q\right)_{\infty}}{% \left(gh,gk,h/g,ag,q/(ag),g/a,aq/g,qg^{2};q\right)_{\infty}}\*{{}_{10}\phi_{9}% }\left({g^{2},qg,-qg,gb,gc,gd,ge,gf,gh,gk\atop g,-g,qg/b,qg/c,qg/d,qg/e,qg/f,% qg/h,qg/k};q,\frac{q^{2}}{bcdefghk}\right)+\mathrm{idem}\left(g;h,k\right).$
5: 17.8 Special Cases of ${{}_{r}\psi_{r}}$ Functions
17.8.4 ${{}_{2}\psi_{2}}\left(b,c;aq/b,aq/c;q,-aq/(bc)\right)=\frac{\left(aq/(bc);q% \right)_{\infty}\left(aq^{2}/b^{2},aq^{2}/c^{2},q^{2},aq,q/a;q^{2}\right)_{% \infty}}{\left(aq/b,aq/c,q/b,q/c,-aq/(bc);q\right)_{\infty}},$
17.8.5 ${{}_{3}\psi_{3}}\left({b,c,d\atop q/b,q/c,q/d};q,\frac{q}{bcd}\right)=\frac{% \left(q,q/(bc),q/(bd),q/(cd);q\right)_{\infty}}{\left(q/b,q/c,q/d,q/(bcd);q% \right)_{\infty}},$
17.8.6 ${{}_{4}\psi_{4}}\left({-qa^{\frac{1}{2}},b,c,d\atop-a^{\frac{1}{2}},aq/b,aq/c,% aq/d};q,\frac{qa^{\frac{3}{2}}}{bcd}\right)=\frac{\left(aq,aq/(bc),aq/(bd),aq/% (cd),qa^{\frac{1}{2}}/b,qa^{\frac{1}{2}}/c,qa^{\frac{1}{2}}/d,q,q/a;q\right)_{% \infty}}{\left(aq/b,aq/c,aq/d,q/b,q/c,q/d,qa^{\frac{1}{2}},qa^{-\frac{1}{2}},% qa^{\frac{3}{2}}/(bcd);q\right)_{\infty}},$
17.8.7 ${{}_{6}\psi_{6}}\left({qa^{\frac{1}{2}},-qa^{\frac{1}{2}},b,c,d,e\atop a^{% \frac{1}{2}},-a^{\frac{1}{2}},aq/b,aq/c,aq/d,aq/e};q,\frac{qa^{2}}{bcde}\right% )=\frac{\left(aq,aq/(bc),aq/(bd),aq/(be),aq/(cd),aq/(ce),aq/(de),q,q/a;q\right% )_{\infty}}{\left(aq/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e,qa^{2}/(bcde);q\right)_{% \infty}}.$
17.8.8 ${{}_{2}\psi_{2}}\left({b^{2},\ifrac{b^{2}}{c}\atop q,cq};q^{2},\ifrac{cq^{2}}{% b^{2}}\right)=\frac{1}{2}\frac{\left(q^{2},qb^{2},\ifrac{q}{b^{2}},\ifrac{cq}{% b^{2}};q^{2}\right)_{\infty}}{\left(cq,\ifrac{cq^{2}}{b^{2}},\ifrac{q^{2}}{b^{% 2}},\ifrac{c}{b^{2}};q^{2}\right)_{\infty}}\left(\frac{\left(\ifrac{c\sqrt{q}}% {b};q\right)_{\infty}}{\left(b\sqrt{q};q\right)_{\infty}}+\frac{\left(\ifrac{-% c\sqrt{q}}{b};q\right)_{\infty}}{\left(-b\sqrt{q};q\right)_{\infty}}\right),$ $\left|cq^{2}\right|<\left|b^{2}\right|$.
6: 17.9 Further Transformations of ${{}_{r+1}\phi_{r}}$ Functions
17.9.2 ${{}_{2}\phi_{1}}\left({q^{-n},b\atop c};q,z\right)=\frac{\left(c/b;q\right)_{n% }}{\left(c;q\right)_{n}}b^{n}{{}_{3}\phi_{1}}\left({q^{-n},b,q/z\atop bq^{1-n}% /c};q,z/c\right),$
17.9.12 ${{}_{3}\phi_{2}}\left({a,b,c\atop d,e};q,\frac{de}{abc}\right)=\frac{\left(e/b% ,e/c,cq/a,q/d;q\right)_{\infty}}{\left(e,cq/d,q/a,e/(bc);q\right)_{\infty}}{{}% _{3}\phi_{2}}\left({c,d/a,cq/e\atop cq/a,bcq/e};q,\frac{bq}{d}\right)-\frac{% \left(q/d,eq/d,b,c,d/a,de/(bcq),bcq^{2}/(de);q\right)_{\infty}}{\left(d/q,e,bq% /d,cq/d,q/a,e/(bc),bcq/e;q\right)_{\infty}}{{}_{3}\phi_{2}}\left({aq/d,bq/d,cq% /d\atop q^{2}/d,eq/d};q,\frac{de}{abc}\right),$
17.9.13 ${{}_{3}\phi_{2}}\left({a,b,c\atop d,e};q,\frac{de}{abc}\right)=\frac{\left(e/b% ,e/c;q\right)_{\infty}}{\left(e,e/(bc);q\right)_{\infty}}{{}_{3}\phi_{2}}\left% ({d/a,b,c\atop d,bcq/e};q,q\right)+\frac{\left(d/a,b,c,de/(bc);q\right)_{% \infty}}{\left(d,e,bc/e,de/(abc);q\right)_{\infty}}{{}_{3}\phi_{2}}\left({e/b,% e/c,de/(abc)\atop de/(bc),eq/(bc)};q,q\right).$
17.9.14 ${{}_{4}\phi_{3}}\left({q^{-n},a,b,c\atop d,e,f};q,q\right)=\frac{\left(e/a,f/a% ;q\right)_{n}}{\left(e,f;q\right)_{n}}a^{n}{{}_{4}\phi_{3}}\left({q^{-n},a,d/b% ,d/c\atop d,aq^{1-n}/e,aq^{1-n}/f};q,q\right)=\frac{\left(a,ef/(ab),ef/(ac);q% \right)_{n}}{\left(e,f,ef/(abc);q\right)_{n}}{{}_{4}\phi_{3}}\left({q^{-n},e/a% ,f/a,ef/(abc)\atop ef/(ab),ef/(ac),q^{1-n}/a};q,q\right).$
17.9.16 ${{}_{8}\phi_{7}}\left({a,qa^{\frac{1}{2}},-qa^{\frac{1}{2}},b,c,d,e,f\atop a^{% \frac{1}{2}},-a^{\frac{1}{2}},aq/b,aq/c,aq/d,aq/e,aq/f};q,\frac{a^{2}q^{2}}{% bcdef}\right)=\frac{\left(aq,aq/(de),aq/(df),aq/(ef);q\right)_{\infty}}{\left(% aq/d,aq/e,aq/f,aq/(def);q\right)_{\infty}}{{}_{4}\phi_{3}}\left({aq/(bc),d,e,f% \atop aq/b,aq/c,def/a};q,q\right)+\frac{\left(aq,aq/(bc),d,e,f,a^{2}q^{2}/(% bdef),a^{2}q^{2}/(cdef);q\right)_{\infty}}{\left(aq/b,aq/c,aq/d,aq/e,aq/f,a^{2% }q^{2}/(bcdef),def/(aq);q\right)_{\infty}}\*{{}_{4}\phi_{3}}\left({aq/(de),aq/% (df),aq/(ef),a^{2}q^{2}/(bcdef)\atop a^{2}q^{2}/(bdef),a^{2}q^{2}/(cdef),aq^{2% }/(def)};q,q\right).$
8: 36.4 Bifurcation Sets
Bifurcation (Catastrophe) Set for Umbilics
$K=1$, fold bifurcation set: …
9: 21.1 Special Notation
 $g,h$ positive integers. … set of all $g\times h$ matrices with integer elements. … set of $g$-dimensional vectors with elements in $S$. number of elements of the set $S$. … set of all elements of $S_{1}$, modulo elements of $S_{2}$. Thus two elements of $S_{1}/S_{2}$ are equivalent if they are both in $S_{1}$ and their difference is in $S_{2}$. (For an example see §20.12(ii).) …
The function $\Theta(\boldsymbol{{\phi}}|\mathbf{B})=\theta\left(\boldsymbol{{\phi}}/(2\pi i% )\middle|\mathbf{B}/(2\pi i)\right)$ is also commonly used; see, for example, Belokolos et al. (1994, §2.5), Dubrovin (1981), and Fay (1973, Chapter 1).