About the Project

Japan stirlingses Reservation Number 📞8

AdvancedHelp

(0.002 seconds)

1—10 of 354 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: 26.8 Set Partitions: Stirling Numbers
§26.8 Set Partitions: Stirling Numbers
s ( n , k ) denotes the Stirling number of the first kind: ( 1 ) n k times the number of permutations of { 1 , 2 , , n } with exactly k cycles. … … Let A and B be the n × n matrices with ( j , k ) th elements s ( j , k ) , and S ( j , k ) , respectively. … For asymptotic approximations for s ( n + 1 , k + 1 ) and S ( n , k ) that apply uniformly for 1 k n as n see Temme (1993) and Temme (2015, Chapter 34). …
3: 26.1 Special Notation
( m n ) binomial coefficient.
B ( n ) Bell number.
C ( n ) Catalan number.
s ( n , k ) Stirling numbers of the first kind.
Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
4: 24.15 Related Sequences of Numbers
§24.15(i) Genocchi Numbers
§24.15(ii) Tangent Numbers
§24.15(iii) Stirling Numbers
The Stirling numbers of the first kind s ( n , m ) , and the second kind S ( n , m ) , are as defined in §26.8(i). …
§24.15(iv) Fibonacci and Lucas Numbers
5: 26.21 Tables
§26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. It also contains a table of Gaussian polynomials up to [ 12 6 ] q . Goldberg et al. (1976) contains tables of binomial coefficients to n = 100 and Stirling numbers to n = 40 .
6: 26.13 Permutations: Cycle Notation
is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … The Stirling cycle numbers of the first kind, denoted by [ n k ] , count the number of permutations of { 1 , 2 , , n } with exactly k cycles. They are related to Stirling numbers of the first kind by … The derangement number, d ( n ) , is the number of elements of 𝔖 n with no fixed points: …
7: Bibliography O
  • K. Okamoto (1987b) Studies on the Painlevé equations. II. Fifth Painlevé equation P V . Japan. J. Math. (N.S.) 13 (1), pp. 47–76.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • M. Onoe (1955) Formulae and Tables, The Modified Quotients of Cylinder Functions. Technical report Technical Report UDC 517.564.3:518.25, Vol. 4, Report of the Institute of Industrial Science, University of Tokyo, Institute of Industrial Science, Chiba City, Japan.
  • 8: Bibliography N
  • A. Nakamura (1996) Toda equation and its solutions in special functions. J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
  • W. Narkiewicz (2000) The Development of Prime Number Theory: From Euclid to Hardy and Littlewood. Springer-Verlag, Berlin.
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • I. Niven, H. S. Zuckerman, and H. L. Montgomery (1991) An Introduction to the Theory of Numbers. 5th edition, John Wiley & Sons Inc., New York.
  • Number Theory Web (website)
  • 9: 24.16 Generalizations
    §24.16 Generalizations
    Polynomials and Numbers of Integer Order
    Bernoulli Numbers of the Second Kind
    Degenerate Bernoulli Numbers
    Here s ( n , m ) again denotes the Stirling number of the first kind. …
    10: Bibliography Y
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).