About the Project

Japan stirlingses Reservation Number %F0%9F%93%9E850.308.3021%F0%9F%93%9E

AdvancedHelp

(0.007 seconds)

11—20 of 512 matching pages

11: 26.13 Permutations: Cycle Notation
The Stirling cycle numbers of the first kind, denoted by [ n k ] , count the number of permutations of { 1 , 2 , , n } with exactly k cycles. They are related to Stirling numbers of the first kind by …See §26.8 for generating functions, recurrence relations, identities, and asymptotic approximations. … The derangement number, d ( n ) , is the number of elements of 𝔖 n with no fixed points: … A permutation is even or odd according to the parity of the number of transpositions. …
12: Guide to Searching the DLMF
  • term:

    a textual word, a number, or a math symbol.

  • phrase:

    any double-quoted sequence of textual words and numbers.

  • proximity operator:

    adj, prec/n, and near/n, where n is any positive natural number.

  • $ stands for any number of alphanumeric characters
    (the more conventional * is reserved for the multiplication operator)
    13: 26.6 Other Lattice Path Numbers
    §26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    Motzkin Number M ( n )
    Narayana Number N ( n , k )
    §26.6(iv) Identities
    14: 16.7 Relations to Other Functions
    For 3 j , 6 j , 9 j symbols see Chapter 34. Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
    15: 26.11 Integer Partitions: Compositions
    c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . … The Fibonacci numbers are determined recursively by …
    26.11.6 c ( T , n ) = F n 1 , n 1 .
    Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
    16: 26.5 Lattice Paths: Catalan Numbers
    §26.5 Lattice Paths: Catalan Numbers
    §26.5(i) Definitions
    C ( n ) is the Catalan number. …
    §26.5(ii) Generating Function
    §26.5(iii) Recurrence Relations
    17: 27.2 Functions
    §27.2(i) Definitions
    where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
    §27.2(ii) Tables
    18: 26.14 Permutations: Order Notation
    As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
    §26.14(iii) Identities
    19: 26.7 Set Partitions: Bell Numbers
    §26.7 Set Partitions: Bell Numbers
    §26.7(i) Definitions
    §26.7(ii) Generating Function
    §26.7(iii) Recurrence Relation
    §26.7(iv) Asymptotic Approximation
    20: 34.10 Zeros
    In a 3 j symbol, if the three angular momenta j 1 , j 2 , j 3 do not satisfy the triangle conditions (34.2.1), or if the projective quantum numbers do not satisfy (34.2.3), then the 3 j symbol is zero. …However, the 3 j and 6 j symbols may vanish for certain combinations of the angular momenta and projective quantum numbers even when the triangle conditions are fulfilled. Such zeros are called nontrivial zeros. For further information, including examples of nontrivial zeros and extensions to 9 j symbols, see Srinivasa Rao and Rajeswari (1993, pp. 133–215, 294–295, 299–310).