Jacobian
(0.001 seconds)
1—10 of 57 matching pages
1: 22.15 Inverse Functions
§22.15 Inverse Functions
►§22.15(i) Definitions
… ►The principal values satisfy … ►§22.15(ii) Representations as Elliptic Integrals
… ►2: 22.2 Definitions
§22.2 Definitions
… ►
22.2.9
►As a function of , with fixed , each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real.
…
…
►The Jacobian functions are related in the following way.
…
3: 22.17 Moduli Outside the Interval [0,1]
§22.17 Moduli Outside the Interval [0,1]
►§22.17(i) Real or Purely Imaginary Moduli
… ►§22.17(ii) Complex Moduli
►When is fixed each of the twelve Jacobian elliptic functions is a meromorphic function of . …For proofs of these results and further information see Walker (2003).4: 22.18 Mathematical Applications
§22.18 Mathematical Applications
►§22.18(i) Lengths and Parametrization of Plane Curves
… ►Lemniscate
… ► … ►5: 22.6 Elementary Identities
§22.6 Elementary Identities
… ►§22.6(ii) Double Argument
… ►§22.6(iii) Half Argument
… ►§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
… ►See §22.17.6: 22.4 Periods, Poles, and Zeros
…
►
§22.4(i) Distribution
… ► … ►For the distribution of the -zeros of the Jacobian elliptic functions see Walker (2009). ►§22.4(ii) Graphical Interpretation via Glaisher’s Notation
…7: 22.14 Integrals
…
►
§22.14(i) Indefinite Integrals of Jacobian Elliptic Functions
… ►§22.14(ii) Indefinite Integrals of Powers of Jacobian Elliptic Functions
… ►The indefinite integral of the 3rd power of a Jacobian function can be expressed as an elementary function of Jacobian functions and a product of Jacobian functions. … ► ►§22.14(iv) Definite Integrals
…8: 22.8 Addition Theorems
9: 22.1 Special Notation
…
►The functions treated in this chapter are the three principal Jacobian elliptic functions , , ; the nine subsidiary Jacobian elliptic functions , , , , , , , , ; the amplitude function ; Jacobi’s epsilon and zeta functions and .
…
►Other notations for are and with ; see Abramowitz and Stegun (1964) and Walker (1996).
…