About the Project

Jacobi transform

AdvancedHelp

(0.003 seconds)

11—20 of 39 matching pages

11: 23.6 Relations to Other Functions
Similar results for the other nine Jacobi functions can be constructed with the aid of the transformations given by Table 22.4.3. …
12: 20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
13: 18.7 Interrelations and Limit Relations
§18.7(i) Linear Transformations
Ultraspherical and Jacobi
Chebyshev, Ultraspherical, and Jacobi
§18.7(ii) Quadratic Transformations
Jacobi Hermite
14: 22.20 Methods of Computation
To compute sn , cn , dn to 10D when x = 0.8 , k = 0.65 . …
§22.20(iii) Landen Transformations
§22.20(vi) Related Functions
Jacobi’s zeta function can then be found by use of (22.16.32). …
15: 23.15 Definitions
In §§23.1523.19, k and k ( ) denote the Jacobi modulus and complementary modulus, respectively, and q = e i π τ ( τ > 0 ) denotes the nome; compare §§20.1 and 22.1. …
k = θ 2 2 ( 0 , q ) θ 3 2 ( 0 , q ) ,
Also 𝒜 denotes a bilinear transformation on τ , given by …The set of all bilinear transformations of this form is denoted by SL ( 2 , ) (Serre (1973, p. 77)). …
16: 20.14 Methods of Computation
The Fourier series of §20.2(i) usually converge rapidly because of the factors q ( n + 1 2 ) 2 or q n 2 , and provide a convenient way of calculating values of θ j ( z | τ ) . …For instance, the first three terms of (20.2.1) give the value of θ 1 ( 2 i | i ) ( = θ 1 ( 2 i , e π ) ) to 12 decimal places. For values of | q | near 1 the transformations of §20.7(viii) can be used to replace τ with a value that has a larger imaginary part and hence a smaller value of | q | . …Hence the first term of the series (20.2.3) for θ 3 ( z τ | τ ) suffices for most purposes. In theory, starting from any value of τ , a finite number of applications of the transformations τ τ + 1 and τ 1 / τ will result in a value of τ with τ 3 / 2 ; see §23.18. …
17: 22.7 Landen Transformations
§22.7 Landen Transformations
§22.7(i) Descending Landen Transformation
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
§22.7(ii) Ascending Landen Transformation
§22.7(iii) Generalized Landen Transformations
18: 29.18 Mathematical Applications
when transformed to sphero-conal coordinates r , β , γ :
x = k r sn ( β , k ) sn ( γ , k ) ,
The wave equation (29.18.1), when transformed to ellipsoidal coordinates α , β , γ :
x = k sn ( α , k ) sn ( β , k ) sn ( γ , k ) ,
y = k k cn ( α , k ) cn ( β , k ) cn ( γ , k ) ,
19: Bibliography B
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • W. G. C. Boyd (1990b) Stieltjes transforms and the Stokes phenomenon. Proc. Roy. Soc. London Ser. A 429, pp. 227–246.
  • 20: Bibliography M
  • J. P. McClure and R. Wong (1978) Explicit error terms for asymptotic expansions of Stieltjes transforms. J. Inst. Math. Appl. 22 (2), pp. 129–145.
  • A. E. Milne, P. A. Clarkson, and A. P. Bassom (1997) Bäcklund transformations and solution hierarchies for the third Painlevé equation. Stud. Appl. Math. 98 (2), pp. 139–194.
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.