About the Project

Jacobi polynomials

AdvancedHelp

(0.006 seconds)

11—20 of 70 matching pages

11: 18.37 Classical OP’s in Two or More Variables
Definition in Terms of Jacobi Polynomials
18.37.1 R m , n ( α ) ( r e i θ ) = e i ( m n ) θ r | m n | P min ( m , n ) ( α , | m n | ) ( 2 r 2 1 ) P min ( m , n ) ( α , | m n | ) ( 1 ) , r 0 , θ , α > 1 .
Definition in Terms of Jacobi Polynomials
18.37.7 P m , n α , β , γ ( x , y ) = P m n ( α , β + γ + 2 n + 1 ) ( 2 x 1 ) x n P n ( β , γ ) ( 2 x 1 y 1 ) , m n 0 , α , β , γ > 1 .
In several variables they occur, for q = 1 , as Jack polynomials and also as Jacobi polynomials associated with root systems; see Macdonald (1995, Chapter VI, §10), Stanley (1989), Kuznetsov and Sahi (2006, Part 1), Heckman (1991). …
12: 18.18 Sums
18.18.2 f ( z ) = n = 0 a n P n ( α , β ) ( z ) ,
See Andrews et al. (1999, Lemma 7.1.1) for the more general expansion of P n ( γ , δ ) ( x ) in terms of P n ( α , β ) ( x ) . …
Jacobi
18.18.25 P n ( α , β ) ( x ) P n ( α , β ) ( 1 ) P n ( α , β ) ( y ) P n ( α , β ) ( 1 ) = = 0 n b n , ( x + y ) P ( α , β ) ( ( 1 + x y ) / ( x + y ) ) P ( α , β ) ( 1 ) ,
18.18.26 P n ( α , β ) ( x ) P n ( α , β ) ( 1 ) = = 0 n b n , ( x + 1 ) .
13: 18.11 Relations to Other Functions
18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
Jacobi
18.11.5 lim n 1 n α P n ( α , β ) ( 1 z 2 2 n 2 ) = lim n 1 n α P n ( α , β ) ( cos z n ) = 2 α z α J α ( z ) .
14: 31.16 Mathematical Applications
Expansions of Heun polynomial products in terms of Jacobi polynomial18.3) products are derived in Kalnins and Miller (1991a, b, 1993) from the viewpoint of interrelation between two bases in a Hilbert space:
15: 18.27 q -Hahn Class
18.27.12_5 lim q 1 P n ( α , β ) ( x ; c , d ; q ) = ( c + d 2 ) n P n ( α , β ) ( 2 x c + d c + d ) .
18.27.14_2 lim c P n ( c q x ; a , b , c ; q ) = p n ( x ; a , b ; q ) .
18.27.14_4 lim q 1 p n ( x ; q α , q β ; q ) = n ! ( α + 1 ) n P n ( α , β ) ( 1 2 x ) .
Little q -Jacobi polynomials p n ( x ; a , b ; q ) for b = 0 are called little q -Laguerre or Wall polynomials: …
16: 18.17 Integrals
Jacobi
Jacobi
Jacobi
Jacobi
Jacobi
17: 18.15 Asymptotic Approximations
§18.15(i) Jacobi
18.15.1 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = π 1 2 2 n + α + β + 1 B ( n + α + 1 , n + β + 1 ) ( m = 0 M 1 f m ( θ ) 2 m ( 2 n + α + β + 2 ) m + O ( n M ) ) ,
For large β , fixed α , and 0 n / β c , Dunster (1999) gives asymptotic expansions of P n ( α , β ) ( z ) that are uniform in unbounded complex z -domains containing z = ± 1 . …This reference also supplies asymptotic expansions of P n ( α , β ) ( z ) for large n , fixed α , and 0 β / n c . … For an asymptotic expansion of P n ( α , β ) ( z ) as n that holds uniformly for complex z bounded away from [ 1 , 1 ] , see Elliott (1971). …
18: 18.34 Bessel Polynomials
18.34.8 lim α P n ( α , a α 2 ) ( 1 + α x ) P n ( α , a α 2 ) ( 1 ) = y n ( x ; a ) .
In this limit the finite system of Jacobi polynomials P n ( α , β ) ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of Romanovski–Bessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). …
19: 18.21 Hahn Class: Interrelations
Hahn Jacobi
18.21.5 lim N Q n ( N x ; α , β , N ) = P n ( α , β ) ( 1 2 x ) P n ( α , β ) ( 1 ) .
See accompanying text
Figure 18.21.1: Askey scheme. … Magnify
20: 18.5 Explicit Representations
Table 18.5.1: Classical OP’s: Rodrigues formulas (18.5.5).
p n ( x ) w ( x ) F ( x ) κ n
P n ( α , β ) ( x ) ( 1 x ) α ( 1 + x ) β 1 x 2 ( 2 ) n n !
18.5.7 P n ( α , β ) ( x ) = = 0 n ( n + α + β + 1 ) ( α + + 1 ) n ! ( n ) ! ( x 1 2 ) = ( α + 1 ) n n ! F 1 2 ( n , n + α + β + 1 α + 1 ; 1 x 2 ) ,
18.5.8 P n ( α , β ) ( x ) = 2 n = 0 n ( n + α ) ( n + β n ) ( x 1 ) n ( x + 1 ) = ( α + 1 ) n n ! ( x + 1 2 ) n F 1 2 ( n , n β α + 1 ; x 1 x + 1 ) ,
The first of each of equations (18.5.7) and (18.5.8) can be regarded as definitions of P n ( α , β ) ( x ) when the conditions α > 1 and β > 1 are not satisfied. …For this reason, and also in the interest of simplicity, in the case of the Jacobi polynomials P n ( α , β ) ( x ) we assume throughout this chapter that α > 1 and β > 1 , unless stated otherwise. …