About the Project

Jacobi nome

AdvancedHelp

(0.002 seconds)

11—19 of 19 matching pages

11: 20.2 Definitions and Periodic Properties
20.2.1 θ 1 ( z | τ ) = θ 1 ( z , q ) = 2 n = 0 ( 1 ) n q ( n + 1 2 ) 2 sin ( ( 2 n + 1 ) z ) ,
20.2.2 θ 2 ( z | τ ) = θ 2 ( z , q ) = 2 n = 0 q ( n + 1 2 ) 2 cos ( ( 2 n + 1 ) z ) ,
20.2.3 θ 3 ( z | τ ) = θ 3 ( z , q ) = 1 + 2 n = 1 q n 2 cos ( 2 n z ) ,
20.2.4 θ 4 ( z | τ ) = θ 4 ( z , q ) = 1 + 2 n = 1 ( 1 ) n q n 2 cos ( 2 n z ) .
20.2.6 θ 1 ( z + ( m + n τ ) π | τ ) = ( 1 ) m + n q n 2 e 2 i n z θ 1 ( z | τ ) ,
12: 20.5 Infinite Products and Related Results
20.5.1 θ 1 ( z , q ) = 2 q 1 / 4 sin z n = 1 ( 1 q 2 n ) ( 1 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.2 θ 2 ( z , q ) = 2 q 1 / 4 cos z n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.3 θ 3 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) ,
20.5.4 θ 4 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) .
20.5.12 θ 3 ( z , q ) θ 3 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 ( 1 ) n q n 1 q 2 n sin ( 2 n z ) ,
13: 23.15 Definitions
In §§23.1523.19, k and k ( ) denote the Jacobi modulus and complementary modulus, respectively, and q = e i π τ ( τ > 0 ) denotes the nome; compare §§20.1 and 22.1. …
23.15.6 λ ( τ ) = θ 2 4 ( 0 , q ) θ 3 4 ( 0 , q ) ;
23.15.7 J ( τ ) = ( θ 2 8 ( 0 , q ) + θ 3 8 ( 0 , q ) + θ 4 8 ( 0 , q ) ) 3 54 ( θ 1 ( 0 , q ) ) 8 ,
23.15.8 θ 1 ( 0 , q ) = θ 1 ( z , q ) / z | z = 0 .
14: 20.15 Tables
20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
15: 22.21 Tables
Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. …
16: 20.9 Relations to Other Functions
20.9.3 R F ( θ 2 2 ( z , q ) θ 2 2 ( 0 , q ) , θ 3 2 ( z , q ) θ 3 2 ( 0 , q ) , θ 4 2 ( z , q ) θ 4 2 ( 0 , q ) ) = θ 1 ( 0 , q ) θ 1 ( z , q ) z ,
20.9.4 R F ( 0 , θ 3 4 ( 0 , q ) , θ 4 4 ( 0 , q ) ) = 1 2 π ,
17: 22.1 Special Notation
x , y real variables.
q nome. 0 q < 1 except in §22.17; see also §20.1.
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . … The notation sn ( z , k ) , cn ( z , k ) , dn ( z , k ) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
18: 23.6 Relations to Other Functions
23.6.2 e 1 = π 2 12 ω 1 2 ( θ 2 4 ( 0 , q ) + 2 θ 4 4 ( 0 , q ) ) ,
23.6.3 e 2 = π 2 12 ω 1 2 ( θ 2 4 ( 0 , q ) θ 4 4 ( 0 , q ) ) ,
23.6.4 e 3 = π 2 12 ω 1 2 ( 2 θ 2 4 ( 0 , q ) + θ 4 4 ( 0 , q ) ) .
23.6.8 η 1 = π 2 12 ω 1 θ 1 ′′′ ( 0 , q ) θ 1 ( 0 , q ) .
23.6.15 σ ( u + ω j ) σ ( ω j ) = exp ( η j u + η 1 u 2 2 ω 1 ) θ j + 1 ( z , q ) θ j + 1 ( 0 , q ) , j = 1 , 2 , 3 .
19: 20.1 Special Notation
The main functions treated in this chapter are the theta functions θ j ( z | τ ) = θ j ( z , q ) where j = 1 , 2 , 3 , 4 and q = e i π τ . When τ is fixed the notation is often abbreviated in the literature as θ j ( z ) , or even as simply θ j , it being then understood that the argument is the primary variable. … Primes on the θ symbols indicate derivatives with respect to the argument of the θ function. … Jacobi’s original notation: Θ ( z | τ ) , Θ 1 ( z | τ ) , H ( z | τ ) , H 1 ( z | τ ) , respectively, for θ 4 ( u | τ ) , θ 3 ( u | τ ) , θ 1 ( u | τ ) , θ 2 ( u | τ ) , where u = z / θ 3 2 ( 0 | τ ) . … Neville’s notation: θ s ( z | τ ) , θ c ( z | τ ) , θ d ( z | τ ) , θ n ( z | τ ) , respectively, for θ 3 2 ( 0 | τ ) θ 1 ( u | τ ) / θ 1 ( 0 | τ ) , θ 2 ( u | τ ) / θ 2 ( 0 | τ ) , θ 3 ( u | τ ) / θ 3 ( 0 | τ ) , θ 4 ( u | τ ) / θ 4 ( 0 | τ ) , where again u = z / θ 3 2 ( 0 | τ ) . …