About the Project

Jacobi inversion formula

AdvancedHelp

(0.003 seconds)

11—17 of 17 matching pages

11: Bibliography K
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (1974) Jacobi polynomials. II. An analytic proof of the product formula. SIAM J. Math. Anal. 5, pp. 125–137.
  • T. H. Koornwinder (1975b) Jacobi polynomials. III. An analytic proof of the addition formula. SIAM. J. Math. Anal. 6, pp. 533–543.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • 12: Bibliography J
  • C. G. J. Jacobi (1829) Fundamenta Nova Theoriae Functionum Ellipticarum. Regiomonti, Sumptibus fratrum Bornträger.
  • E. Jahnke and F. Emde (1945) Tables of Functions with Formulae and Curves. 4th edition, Dover Publications, New York.
  • D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth (1995) Sur l’inversion de y α e y au moyen des nombres de Stirling associés. C. R. Acad. Sci. Paris Sér. I Math. 320 (12), pp. 1449–1452.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • F. Johansson (2012) Efficient implementation of the Hardy-Ramanujan-Rademacher formula. LMS J. Comput. Math. 15, pp. 341–359.
  • 13: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • 14: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • L. Carlitz (1963) The inverse of the error function. Pacific J. Math. 13 (2), pp. 459–470.
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • R. Cools (2003) An encyclopaedia of cubature formulas. J. Complexity 19 (3), pp. 445–453.
  • 15: 15.12 Asymptotic Approximations
  • (d)

    z > 1 2 and α 1 2 π + δ ph c α + + 1 2 π δ , where

    15.12.1 α ± = arctan ( ph z ph ( 1 z ) π ln | 1 z 1 | ) ,

    with z restricted so that ± α ± [ 0 , 1 2 π ) .

  • 15.12.6 ζ = arccosh z .
    See also Dunster (1999) where the asymptotics of Jacobi polynomials is described; compare (15.9.1). …
    15.12.10 ζ = arccosh ( 1 4 z 1 ) ,
    By combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F ( a + e 1 λ , b + e 2 λ ; c + e 3 λ ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …
    16: 1.14 Integral Transforms
    Inversion
    Inversion
    Inversion
    Inversion
    Inversion
    17: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • R. Bo and R. Wong (1999) A uniform asymptotic formula for orthogonal polynomials associated with exp ( x 4 ) . J. Approx. Theory 98, pp. 146–166.