About the Project

Jacobi elliptic

AdvancedHelp

(0.007 seconds)

11—20 of 61 matching pages

11: 22.15 Inverse Functions
are denoted respectively by
ξ = arcsn ( x , k ) ,
η = arccn ( x , k ) ,
ζ = arcdn ( x , k ) .
Equations (22.15.1) and (22.15.4), for arcsn ( x , k ) , are equivalent to (22.15.12) and also to …
12: 22.5 Special Values
Table 22.5.2 gives sn ( z , k ) , cn ( z , k ) , dn ( z , k ) for other special values of z . …
Table 22.5.3: Limiting forms of Jacobian elliptic functions as k 0 .
sn ( z , k ) sin z cd ( z , k ) cos z dc ( z , k ) sec z ns ( z , k ) csc z
cn ( z , k ) cos z sd ( z , k ) sin z nc ( z , k ) sec z ds ( z , k ) csc z
dn ( z , k ) 1 nd ( z , k ) 1 sc ( z , k ) tan z cs ( z , k ) cot z
Table 22.5.4: Limiting forms of Jacobian elliptic functions as k 1 .
sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
13: 22.3 Graphics
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. … sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
See accompanying text
Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
14: 22.2 Definitions
22.2.4 sn ( z , k ) = θ 3 ( 0 , q ) θ 2 ( 0 , q ) θ 1 ( ζ , q ) θ 4 ( ζ , q ) = 1 ns ( z , k ) ,
22.2.5 cn ( z , k ) = θ 4 ( 0 , q ) θ 2 ( 0 , q ) θ 2 ( ζ , q ) θ 4 ( ζ , q ) = 1 nc ( z , k ) ,
22.2.7 sd ( z , k ) = θ 3 2 ( 0 , q ) θ 2 ( 0 , q ) θ 4 ( 0 , q ) θ 1 ( ζ , q ) θ 3 ( ζ , q ) = 1 ds ( z , k ) ,
22.2.10 p q ( z , k ) = p r ( z , k ) q r ( z , k ) = 1 q p ( z , k ) ,
s s ( z , k ) = 1 . …
15: 22.10 Maclaurin Series
22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
22.10.3 dn ( z , k ) = 1 k 2 z 2 2 ! + k 2 ( 4 + k 2 ) z 4 4 ! k 2 ( 16 + 44 k 2 + k 4 ) z 6 6 ! + O ( z 8 ) .
22.10.5 cn ( z , k ) = cos z + k 2 4 ( z sin z cos z ) sin z + O ( k 4 ) ,
22.10.6 dn ( z , k ) = 1 k 2 2 sin 2 z + O ( k 4 ) ,
16: 29.18 Mathematical Applications
x = k r sn ( β , k ) sn ( γ , k ) ,
y = i k k r cn ( β , k ) cn ( γ , k ) ,
x = k sn ( α , k ) sn ( β , k ) sn ( γ , k ) ,
y = k k cn ( α , k ) cn ( β , k ) cn ( γ , k ) ,
z = i k k dn ( α , k ) dn ( β , k ) dn ( γ , k ) ,
17: 29.11 Lamé Wave Equation
29.11.1 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) + k 2 ω 2 sn 4 ( z , k ) ) w = 0 ,
18: 29.8 Integral Equations
29.8.1 x = k 2 sn ( z , k ) sn ( z 1 , k ) sn ( z 2 , k ) sn ( z 3 , k ) k 2 k 2 cn ( z , k ) cn ( z 1 , k ) cn ( z 2 , k ) cn ( z 3 , k ) + 1 k 2 dn ( z , k ) dn ( z 1 , k ) dn ( z 2 , k ) dn ( z 3 , k ) ,
where z , z 1 , z 2 , z 3 are real, and sn , cn , dn are the Jacobian elliptic functions (§22.2). …
29.8.6 y = 1 k dn ( z , k ) dn ( z 1 , k ) .
29.8.7 𝐸𝑐 ν 2 m + 1 ( z 1 , k 2 ) w 2 ( K ) + w 2 ( K ) w 2 ( 0 ) = k 2 sn ( z 1 , k ) K K sn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) d z ,
29.8.9 𝐸𝑠 ν 2 m + 2 ( z 1 , k 2 ) d w 2 ( z ) / d z | z = K d w 2 ( z ) / d z | z = K w 2 ( 0 ) = k 4 k sn ( z 1 , k ) cn ( z 1 , k ) K K sn ( z , k ) cn ( z , k ) d 2 𝖯 ν ( y ) d y 2 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) d z .
19: 22.18 Mathematical Applications
x = a sn ( u , k ) ,
y = b cn ( u , k ) ,
22.18.5 r = cn ( 2 l , 1 / 2 ) ,
By use of the functions sn and cn , parametrizations of algebraic equations, such as … With the identification x = sn ( z , k ) , y = d ( sn ( z , k ) ) / d z , the addition law (22.18.8) is transformed into the addition theorem (22.8.1); see Akhiezer (1990, pp. 42, 45, 73–74) and McKean and Moll (1999, §§2.14, 2.16). …
20: 22.11 Fourier and Hyperbolic Series
22.11.1 sn ( z , k ) = 2 π K k n = 0 q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.2 cn ( z , k ) = 2 π K k n = 0 q n + 1 2 cos ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
22.11.3 dn ( z , k ) = π 2 K + 2 π K n = 1 q n cos ( 2 n ζ ) 1 + q 2 n .
Similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) follow immediately from (22.6.1). … Again, similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) may be derived via (22.6.1). …