About the Project

Jacobi’s

AdvancedHelp

(0.006 seconds)

11—20 of 112 matching pages

11: 22.18 Mathematical Applications
Ellipse
22.18.3 l ( u ) = a ( u , k ) ,
where ( u , k ) is Jacobis epsilon function (§22.16(ii)). …
12: 20.11 Generalizations and Analogs
This is Jacobis inversion problem of §20.9(ii). … Each provides an extension of Jacobis inversion problem. …
13: 20.12 Mathematical Applications
For applications of Jacobis triple product (20.5.9) to Ramanujan’s τ ( n ) function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145). …
14: 22.20 Methods of Computation
Jacobis epsilon function can be computed from its representation (22.16.30) in terms of theta functions and complete elliptic integrals; compare §20.14. Jacobis zeta function can then be found by use of (22.16.32). …
15: 31.2 Differential Equations
Jacobis Elliptic Form
16: 17.8 Special Cases of ψ r r Functions
Jacobis Triple Product
17: 20.5 Infinite Products and Related Results
Jacobis Triple Product
18: 22.19 Physical Applications
22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) ) ,
22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E ) ,
See accompanying text
Figure 22.19.1: Jacobis amplitude function am ( x , k ) for 0 x 10 π and k = 0.5 , 0.9999 , 1.0001 , 2 . … Magnify
19: 19.25 Relations to Other Functions
19.25.28 Δ ( p , q ) = p s 2 ( u , k ) q s 2 ( u , k ) = Δ ( q , p ) ,
19.25.31 u = R F ( p s 2 ( u , k ) , q s 2 ( u , k ) , r s 2 ( u , k ) ) ;
20: 22.2 Definitions
22.2.9 sc ( z , k ) = θ 3 ( 0 , q ) θ 4 ( 0 , q ) θ 1 ( ζ , q ) θ 2 ( ζ , q ) = 1 cs ( z , k ) .
s s ( z , k ) = 1 . …