About the Project

Jacobi%E2%80%99s

AdvancedHelp

(0.009 seconds)

1—10 of 622 matching pages

1: 22.16 Related Functions
§22.16(i) Jacobis Amplitude ( am ) Function
§22.16(ii) Jacobis Epsilon Function
Integral Representations
§22.16(iii) Jacobis Zeta Function
Definition
2: 18.3 Definitions
§18.3 Definitions
The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. … This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For finite power series of the Jacobi, ultraspherical, Laguerre, and Hermite polynomials, see §18.5(iii) (in powers of x 1 for Jacobi polynomials, in powers of x for the other cases). …
Jacobi on Other Intervals
3: 31.2 Differential Equations
§31.2(i) Heun’s Equation
Jacobis Elliptic Form
Weierstrass’s Form
§31.2(v) Heun’s Equation Automorphisms
Composite Transformations
4: 29.2 Differential Equations
§29.2(i) Lamé’s Equation
For sn ( z , k ) see §22.2. …
§29.2(ii) Other Forms
For am ( z , k ) see §22.16(i). …
5: 7.20 Mathematical Applications
§7.20(ii) Cornu’s Spiral
Let the set { x ( t ) , y ( t ) , t } be defined by x ( t ) = C ( t ) , y ( t ) = S ( t ) , t 0 . Then the set { x ( t ) , y ( t ) } is called Cornu’s spiral: it is the projection of the corkscrew on the { x , y } -plane. …
See accompanying text
Figure 7.20.1: Cornu’s spiral, formed from Fresnel integrals, is defined parametrically by x = C ( t ) , y = S ( t ) , t [ 0 , ) . Magnify
6: 28.2 Definitions and Basic Properties
§28.2(i) Mathieu’s Equation
§28.2(iii) Floquet’s Theorem and the Characteristic Exponents
This is the characteristic equation of Mathieu’s equation (28.2.1). …
§28.2(iv) Floquet Solutions
7: 7.2 Definitions
§7.2(ii) Dawson’s Integral
7.2.5 F ( z ) = e z 2 0 z e t 2 d t .
7.2.8 S ( z ) = 0 z sin ( 1 2 π t 2 ) d t ,
( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection. …
lim x S ( x ) = 1 2 .
8: 28.20 Definitions and Basic Properties
§28.20(i) Modified Mathieu’s Equation
When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation:
28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
28.20.2 ( ζ 2 1 ) w ′′ + ζ w + ( 4 q ζ 2 2 q a ) w = 0 , ζ = cosh z .
For s , …
9: 22.8 Addition Theorems
22.8.14 sn ( u + v ) = sn u cn u dn v + sn v cn v dn u cn u cn v + sn u dn u sn v dn v ,
22.8.15 cn ( u + v ) = sn u cn u dn v sn v cn v dn u sn u cn v dn v sn v cn u dn u ,
22.8.17 dn ( u + v ) = sn u cn v dn u sn v cn u dn v sn u cn v dn v sn v cn u dn u ,
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .
If sums/differences of the z j s are rational multiples of K ( k ) , then further relations follow. …
10: 22.6 Elementary Identities
22.6.2 1 + cs 2 ( z , k ) = k 2 + ds 2 ( z , k ) = ns 2 ( z , k ) ,
22.6.5 sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 k 2 sn 4 ( z , k ) ,
22.6.22 p q 2 ( 1 2 z , k ) = p s ( z , k ) + r s ( z , k ) q s ( z , k ) + r s ( z , k ) = p q ( z , k ) + r q ( z , k ) 1 + r q ( z , k ) = p r ( z , k ) + 1 q r ( z , k ) + 1 .
§22.6(iv) Rotation of Argument (Jacobis Imaginary Transformation)
Table 22.6.1: Jacobis imaginary transformation of Jacobian elliptic functions.
sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )