About the Project

Jacobi%20triple%20product

AdvancedHelp

(0.003 seconds)

1—10 of 333 matching pages

1: 22.16 Related Functions
§22.16(i) Jacobi’s Amplitude ( am ) Function
§22.16(ii) Jacobi’s Epsilon Function
Integral Representations
§22.16(iii) Jacobi’s Zeta Function
Properties
2: 18.3 Definitions
§18.3 Definitions
The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. … This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For finite power series of the Jacobi, ultraspherical, Laguerre, and Hermite polynomials, see §18.5(iii) (in powers of x 1 for Jacobi polynomials, in powers of x for the other cases). …
Jacobi on Other Intervals
3: 20.4 Values at z = 0
20.4.3 θ 2 ( 0 , q ) = 2 q 1 / 4 n = 1 ( 1 q 2 n ) ( 1 + q 2 n ) 2 ,
20.4.4 θ 3 ( 0 , q ) = n = 1 ( 1 q 2 n ) ( 1 + q 2 n 1 ) 2 ,
20.4.5 θ 4 ( 0 , q ) = n = 1 ( 1 q 2 n ) ( 1 q 2 n 1 ) 2 .
Jacobi’s Identity
20.4.6 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) .
4: 20.7 Identities
20.7.10 θ 1 ( 2 z , q ) = 2 θ 1 ( z , q ) θ 2 ( z , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) .
§20.7(iv) Reduction Formulas for Products
See Lawden (1989, pp. 19–20). …
§20.7(ix) Addendum to 20.7(iv) Reduction Formulas for Products
20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
5: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • 6: 22.3 Graphics
    Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. … sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
    See accompanying text
    Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    7: 20.11 Generalizations and Analogs
    This is Jacobi’s inversion problem of §20.9(ii). … Each provides an extension of Jacobi’s inversion problem. … For m = 1 , 2 , 3 , 4 , n = 1 , 2 , 3 , 4 , and m n , define twelve combined theta functions φ m , n ( z , q ) by …
    20.11.9 φ m , n ( z , q ) = φ m , 1 ( z , q ) φ 1 , n ( z , q ) = 1 φ n , m ( z , q ) = φ m , 1 ( z , q ) φ n , 1 ( z , q ) = φ 1 , n ( z , q ) φ 1 , m ( z , q ) .
    8: 22.4 Periods, Poles, and Zeros
    For example, the poles of sn ( z , k ) , abbreviated as sn in the following tables, are at z = 2 m K + ( 2 n + 1 ) i K . … Then: (a) In any lattice unit cell p q ( z , k ) has a simple zero at z = p and a simple pole at z = q . (b) The difference between p and the nearest q is a half-period of p q ( z , k ) . This half-period will be plus or minus a member of the triple K , i K , K + i K ; the other two members of this triple are quarter periods of p q ( z , k ) . … For example, sn ( z + K , k ) = cd ( z , k ) . …
    9: 22.13 Derivatives and Differential Equations
    Note that each derivative in Table 22.13.1 is a constant multiple of the product of the corresponding copolar functions. …
    22.13.1 ( d d z sn ( z , k ) ) 2 = ( 1 sn 2 ( z , k ) ) ( 1 k 2 sn 2 ( z , k ) ) ,
    22.13.2 ( d d z cn ( z , k ) ) 2 = ( 1 cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) ,
    22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
    22.13.10 ( d d z ns ( z , k ) ) 2 = ( ns 2 ( z , k ) k 2 ) ( ns 2 ( z , k ) 1 ) ,
    10: 20.5 Infinite Products and Related Results
    §20.5 Infinite Products and Related Results
    §20.5(i) Single Products
    Jacobi’s Triple Product
    §20.5(iii) Double Products