About the Project

Jacobi%20elliptic%20form

AdvancedHelp

(0.002 seconds)

3 matching pages

1: Bibliography K
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • A. Khare and U. Sukhatme (2002) Cyclic identities involving Jacobi elliptic functions. J. Math. Phys. 43 (7), pp. 3798–3806.
  • A. Khare and U. Sukhatme (2004) Connecting Jacobi elliptic functions with different modulus parameters. Pramana 63 (5), pp. 921–936.
  • S. Kida (1981) A vortex filament moving without change of form. J. Fluid Mech. 112, pp. 397–409.
  • N. Koblitz (1993) Introduction to Elliptic Curves and Modular Forms. 2nd edition, Graduate Texts in Mathematics, Vol. 97, Springer-Verlag, New York.
  • 2: Errata
  • Equation (22.20.5)

    A note was added after (22.20.5) to deal with cases when computation of dn ( x , k ) becomes numerically unstable near x = K .

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • Equation (22.6.7)
    22.6.7 dn ( 2 z , k ) = dn 2 ( z , k ) k 2 sn 2 ( z , k ) cn 2 ( z , k ) 1 k 2 sn 4 ( z , k ) = dn 4 ( z , k ) + k 2 k 2 sn 4 ( z , k ) 1 k 2 sn 4 ( z , k )

    Originally the term k 2 sn 2 ( z , k ) cn 2 ( z , k ) was given incorrectly as k 2 sn 2 ( z , k ) dn 2 ( z , k ) .

    Reported 2014-02-28 by Svante Janson.

  • Table 22.5.4

    Originally the limiting form for sc ( z , k ) in the last line of this table was incorrect ( cosh z , instead of sinh z ).

    sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
    cn ( z , k ) sech z sd ( z , k ) sinh z nc ( z , k ) cosh z ds ( z , k ) csch z
    dn ( z , k ) sech z nd ( z , k ) cosh z sc ( z , k ) sinh z cs ( z , k ) csch z

    Reported 2010-11-23.

  • Equation (22.16.14)
    22.16.14 ( x , k ) = 0 sn ( x , k ) 1 k 2 t 2 1 t 2 d t

    Originally this equation appeared with the upper limit of integration as x , rather than sn ( x , k ) .

    Reported 2010-07-08 by Charles Karney.

  • 3: Bibliography C
  • B. C. Carlson (1972b) Intégrandes à deux formes quadratiques. C. R. Acad. Sci. Paris Sér. A–B 274 (15 May, 1972, Sér. A), pp. 1458–1461 (French).
  • M. A. Chaudhry, N. M. Temme, and E. J. M. Veling (1996) Asymptotics and closed form of a generalized incomplete gamma function. J. Comput. Appl. Math. 67 (2), pp. 371–379.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.