Jacobi theta functions
(0.005 seconds)
1—10 of 45 matching pages
1: 20.11 Generalizations and Analogs
…
►
…
►For , , and , define twelve combined theta functions
by
►
20.11.6
,
►
20.11.7
,
►
20.11.8
.
…
2: 20.2 Definitions and Periodic Properties
3: 22.2 Definitions
4: 23.15 Definitions
5: 20.15 Tables
…
►
20.15.1
…
►Tables of Neville’s theta functions
, , , (see §20.1) and their logarithmic -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for , where (in radian measure) , and is defined by (20.15.1).
…
6: 20.1 Special Notation
…
►The main functions treated in this chapter are the theta functions
where and .
…
►Primes on the symbols indicate derivatives with respect to the argument of the
function.
…
►Jacobi’s original notation: , , , , respectively, for , , , , where .
…
►Neville’s notation: , , , , respectively, for , , , , where again .
…
►McKean and Moll’s notation: , .
…
7: 20.10 Integrals
8: 20.13 Physical Applications
…
►The functions
, , provide periodic solutions of the partial differential equation
…
►
20.13.4
…
►
20.13.5
…
►In the singular limit , the functions
, , become integral kernels of Feynman path integrals (distribution-valued Green’s functions); see Schulman (1981, pp. 194–195).
…