About the Project

Jacobi form

AdvancedHelp

(0.002 seconds)

1—10 of 38 matching pages

1: 31.2 Differential Equations
Jacobi’s Elliptic Form
2: 35.7 Gaussian Hypergeometric Function of Matrix Argument
Jacobi Form
3: 18.7 Interrelations and Limit Relations
Ultraspherical and Jacobi
Chebyshev, Ultraspherical, and Jacobi
Legendre, Ultraspherical, and Jacobi
§18.7(iii) Limit Relations
Jacobi Hermite
4: 18.11 Relations to Other Functions
Jacobi
5: 22.5 Special Values
For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . … Table 22.5.2 gives sn ( z , k ) , cn ( z , k ) , dn ( z , k ) for other special values of z . For example, sn ( 1 2 K , k ) = ( 1 + k ) 1 / 2 . …
§22.5(ii) Limiting Values of k
6: 18.34 Bessel Polynomials
18.34.8 lim α P n ( α , a α 2 ) ( 1 + α x ) P n ( α , a α 2 ) ( 1 ) = y n ( x ; a ) .
7: 18.2 General Orthogonal Polynomials
First Form
Second Form
Monic and Orthonormal Forms
Confluent Form
8: 18.9 Recurrence Relations and Derivatives
First Form
For p n ( x ) = P n ( α , β ) ( x ) , …
Second Form
Jacobi
Jacobi
9: 22.18 Mathematical Applications
For any two points ( x 1 , y 1 ) and ( x 2 , y 2 ) on this curve, their sum ( x 3 , y 3 ) , always a third point on the curve, is defined by the Jacobi–Abel addition law …
10: Errata
  • Table 22.5.4

    Originally the limiting form for sc ( z , k ) in the last line of this table was incorrect ( cosh z , instead of sinh z ).

    sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
    cn ( z , k ) sech z sd ( z , k ) sinh z nc ( z , k ) cosh z ds ( z , k ) csch z
    dn ( z , k ) sech z nd ( z , k ) cosh z sc ( z , k ) sinh z cs ( z , k ) csch z

    Reported 2010-11-23.