Jacobi elliptic
(0.002 seconds)
1—10 of 61 matching pages
1: 22.16 Related Functions
…
►
§22.16(i) Jacobi’s Amplitude () Function
►Definition
… ►Quasi-Periodicity
… ►Integral Representation
… ►Special Values
…2: 22.8 Addition Theorems
3: 22.6 Elementary Identities
…
►
…
4: 22.13 Derivatives and Differential Equations
…
►
…
5: 22.4 Periods, Poles, and Zeros
…
►
6: 22.21 Tables
§22.21 Tables
►Spenceley and Spenceley (1947) tabulates , , , , for and to 12D, or 12 decimals of a radian in the case of . ►Curtis (1964b) tabulates , , for , , and (not ) to 20D. ►Lawden (1989, pp. 280–284 and 293–297) tabulates , , , , to 5D for , , where ranges from 1. … ►Zhang and Jin (1996, p. 678) tabulates , , for and to 7D. …7: 22.14 Integrals
8: 22.1 Special Notation
…
►The functions treated in this chapter are the three principal Jacobian elliptic functions , , ; the nine subsidiary Jacobian elliptic functions , , , , , , , , ; the amplitude function ; Jacobi’s epsilon and zeta functions and .
…
►The notation , , is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882).
Other notations for are and with ; see Abramowitz and Stegun (1964) and Walker (1996).
…