About the Project

Hurwitz zeta function

AdvancedHelp

(0.004 seconds)

11—19 of 19 matching pages

11: Bibliography N
  • G. Nemes (2017a) Error bounds for the asymptotic expansion of the Hurwitz zeta function. Proc. A. 473 (2203), pp. 20170363, 16.
  • 12: Bibliography R
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • 13: Bibliography P
  • R. B. Paris (2005b) The Stokes phenomenon associated with the Hurwitz zeta function ζ ( s , a ) . Proc. Roy. Soc. London Ser. A 461, pp. 297–304.
  • 14: Bibliography C
  • M. W. Coffey (2008) On some series representations of the Hurwitz zeta function. J. Comput. Appl. Math. 216 (1), pp. 297–305.
  • M. W. Coffey (2009) An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225 (2), pp. 338–346.
  • 15: Bibliography B
  • B. C. Berndt (1972) On the Hurwitz zeta-function. Rocky Mountain J. Math. 2 (1), pp. 151–157.
  • 16: Bibliography M
  • J. Miller and V. S. Adamchik (1998) Derivatives of the Hurwitz zeta function for rational arguments. J. Comput. Appl. Math. 100 (2), pp. 201–206.
  • 17: Software Index
    Open Source With Book Commercial
    25.21(iv) ζ ( s , a ) a
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    18: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • J. Keating (1993) The Riemann Zeta-Function and Quantum Chaology. In Quantum Chaos (Varenna, 1991), Proc. Internat. School of Phys. Enrico Fermi, CXIX, pp. 145–185.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 19: Errata
  • Equations (25.11.6), (25.11.19), and (25.11.20)

    Originally all six integrands in these equations were incorrect because their numerators contained the function B ~ 2 ( x ) . The correct function is B ~ 2 ( x ) B 2 2 . The new equations are:

    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0

    Reported 2016-05-08 by Clemens Heuberger.

    25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.

    25.11.20 ( 1 ) k ζ ( k ) ( s , a ) = ( ln a ) k a s ( 1 2 + a s 1 ) + k ! a 1 s r = 0 k 1 ( ln a ) r r ! ( s 1 ) k r + 1 s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k ( x + a ) s + 2 d x + k ( 2 s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 1 ( x + a ) s + 2 d x k ( k 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.