About the Project

Hurwitz criterion

AdvancedHelp

(0.001 seconds)

1—10 of 23 matching pages

1: 25.11 Hurwitz Zeta Function
§25.11 Hurwitz Zeta Function
§25.11(i) Definition
§25.11(ii) Graphics
§25.11(vi) Derivatives
§25.11(ix) Integrals
2: 1.11 Zeros of Polynomials
Hurwitz Criterion
3: 21.10 Methods of Computation
  • Belokolos et al. (1994, Chapter 5) and references therein. Here the Riemann surface is represented by the action of a Schottky group on a region of the complex plane. The same representation is used in Gianni et al. (1998).

  • Tretkoff and Tretkoff (1984). Here a Hurwitz system is chosen to represent the Riemann surface.

  • 4: 25.13 Periodic Zeta Function
    Also,
    25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
    25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
    5: 25.18 Methods of Computation
    §25.18(i) Function Values and Derivatives
    Calculations relating to derivatives of ζ ( s ) and/or ζ ( s , a ) can be found in Apostol (1985a), Choudhury (1995), Miller and Adamchik (1998), and Yeremin et al. (1988). For the Hurwitz zeta function ζ ( s , a ) see Spanier and Oldham (1987, p. 653) and Coffey (2009). …
    6: 25.1 Special Notation
    The main related functions are the Hurwitz zeta function ζ ( s , a ) , the dilogarithm Li 2 ( z ) , the polylogarithm Li s ( z ) (also known as Jonquière’s function ϕ ( z , s ) ), Lerch’s transcendent Φ ( z , s , a ) , and the Dirichlet L -functions L ( s , χ ) .
    7: Bibliography B
  • B. C. Berndt (1972) On the Hurwitz zeta-function. Rocky Mountain J. Math. 2 (1), pp. 151–157.
  • K. R. Brownstein (2000) Criterion for Existence of a Bound State In One Dimension. American Journal of Physics 68 (2), pp. 160–161.
  • 8: 8.15 Sums
    8.15.2 a k = 1 ( e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) + e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) ) = ζ ( a , z + h ) + z a + 1 a + 1 + ( h 1 2 ) z a , h [ 0 , 1 ] .
    For the Hurwitz zeta function ζ ( s , a ) see §25.11(i). …
    9: 25.19 Tables
  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 10: 25.14 Lerch’s Transcendent
    The Hurwitz zeta function ζ ( s , a ) 25.11) and the polylogarithm Li s ( z ) 25.12(ii)) are special cases:
    25.14.2 ζ ( s , a ) = Φ ( 1 , s , a ) , s > 1 , a 0 , 1 , 2 , ,