About the Project

Hill type

AdvancedHelp

(0.001 seconds)

9 matching pages

1: 1.3 Determinants, Linear Operators, and Spectral Expansions
Of importance for special functions are infinite determinants of Hill’s type. These have the property that the double series …Hill-type determinants always converge. …
2: Bibliography H
  • C. J. Hill (1828) Über die Integration logarithmisch-rationaler Differentiale. J. Reine Angew. Math. 3, pp. 101–159.
  • G. W. Hill and A. W. Davis (1973) Algorithm 442: Normal deviate. Comm. ACM 16 (1), pp. 51–52.
  • I. D. Hill (1973) Algorithm AS66: The normal integral. Appl. Statist. 22 (3), pp. 424–427.
  • E. Hille (1929) Note on some hypergeometric series of higher order. J. London Math. Soc. 4, pp. 50–54.
  • H. Hochstadt (1963) Estimates of the stability intervals for Hill’s equation. Proc. Amer. Math. Soc. 14 (6), pp. 930–932.
  • 3: Bibliography S
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • R. A. Silverman (1967) Introductory Complex Analysis. Prentice-Hall, Inc., Englewood Cliffs, N.J..
  • R. Sips (1965) Représentation asymptotique de la solution générale de l’équation de Mathieu-Hill. Acad. Roy. Belg. Bull. Cl. Sci. (5) 51 (11), pp. 1415–1446.
  • H. Skovgaard (1954) On inequalities of the Turán type. Math. Scand. 2, pp. 65–73.
  • J. C. Slater (1942) Microwave Transmission. McGraw-Hill Book Co., New York.
  • 4: Bibliography M
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • P. M. Morse and H. Feshbach (1953a) Methods of Theoretical Physics. Vol. 1, McGraw-Hill Book Co., New York.
  • P. M. Morse and H. Feshbach (1953b) Methods of Theoretical Physics. Vol. 2, McGraw-Hill Book Co., New York.
  • 5: Bibliography K
  • T. Kasuga and R. Sakai (2003) Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (1), pp. 13–53.
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • E. J. Konopinski (1981) Electromagnetic Fields and Relativistic Particles. International Series in Pure and Applied Physics, McGraw-Hill Book Co., New York.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • 6: 18.18 Sums
    §18.18(vi) Bateman-Type Sums
    Jacobi
    Formula (18.18.27) is known as the Hille–Hardy formula. …
    7: Bibliography V
  • R. Vidūnas and N. M. Temme (2002) Symbolic evaluation of coefficients in Airy-type asymptotic expansions. J. Math. Anal. Appl. 269 (1), pp. 317–331.
  • H. Volkmer (1983) Integralgleichungen für periodische Lösungen Hill’scher Differentialgleichungen. Analysis 3 (1-4), pp. 189–203 (German).
  • 8: Bibliography
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • Y. Ameur and J. Cronvall (2023) Szegő Type Asymptotics for the Reproducing Kernel in Spaces of Full-Plane Weighted Polynomials. Comm. Math. Phys. 398 (3), pp. 1291–1348.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • 9: Bibliography P
  • A. Papoulis (1977) Signal Analysis. McGraw-Hill, New York.
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • S. Porubský (1998) Voronoi type congruences for Bernoulli numbers. In Voronoi’s Impact on Modern Science. Book I, P. Engel and H. Syta (Eds.),