About the Project

Heun polynomial products

AdvancedHelp

(0.001 seconds)

9 matching pages

1: 31.16 Mathematical Applications
§31.16(ii) Heun Polynomial Products
Expansions of Heun polynomial products in terms of Jacobi polynomial18.3) products are derived in Kalnins and Miller (1991a, b, 1993) from the viewpoint of interrelation between two bases in a Hilbert space: …
2: 31.8 Solutions via Quadratures
Here Ψ g , N ( λ , z ) is a polynomial of degree g in λ and of degree N = m 0 + m 1 + m 2 + m 3 in z , that is a solution of the third-order differential equation satisfied by a product of any two solutions of Heun’s equation. …
3: Bibliography W
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • J. Wishart (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A, pp. 32–52.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 4: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • A. Pascadi (2021) Several new product identities in relation to Rogers-Ramanujan type sums and mock theta functions. Res. Math. Sci. 8 (1), pp. Paper No. 16, 58.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.
  • 5: Bibliography L
  • V. Laĭ (1994) The two-point connection problem for differential equations of the Heun class. Teoret. Mat. Fiz. 101 (3), pp. 360–368 (Russian).
  • W. Lay, K. Bay, and S. Yu. Slavyanov (1998) Asymptotic and numeric study of eigenvalues of the double confluent Heun equation. J. Phys. A 31 (42), pp. 8521–8531.
  • W. Lay and S. Yu. Slavyanov (1998) The central two-point connection problem for the Heun class of ODEs. J. Phys. A 31 (18), pp. 4249–4261.
  • W. Lay and S. Yu. Slavyanov (1999) Heun’s equation with nearby singularities. Proc. Roy. Soc. London Ser. A 455, pp. 4347–4361.
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • 6: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.
  • 7: Bibliography H
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • E. R. Hansen (1975) A Table of Series and Products. Prentice-Hall, Englewood Cliffs, N.J..
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • E. Hendriksen and H. van Rossum (1986) Orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 48 (1), pp. 17–36.
  • F. T. Howard (1976) Roots of the Euler polynomials. Pacific J. Math. 64 (1), pp. 181–191.
  • 8: Errata
  • Additions

    Text was added below (17.8.3) discussing higher-order tuple product identities.

  • Equation (18.12.2)
    18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n

    This equation was updated to include on the left-hand side, its definition in terms of a product of two 𝐅 1 0 functions.

  • Equations (31.3.10), (31.3.11)
    31.3.10 z α H ( 1 a , q a α ( β ϵ ) α a ( β δ ) ; α , α γ + 1 , α β + 1 , δ ; 1 z )
    31.3.11 z β H ( 1 a , q a β ( α ϵ ) β a ( α δ ) ; β , β γ + 1 , β α + 1 , δ ; 1 z )

    In both equations, the second entry in the H has been corrected with an extra minus sign.

  • References

    Some references were added to §§7.25(ii), 7.25(iii), 7.25(vi), 8.28(ii), and to ¶Products (in §10.74(vii)) and §10.77(ix).

  • Equations (31.16.2) and (31.16.3)
    31.16.2
    x y = a sin 2 θ cos 2 ϕ ,
    ( x 1 ) ( y 1 ) = ( 1 a ) sin 2 θ sin 2 ϕ ,
    ( x a ) ( y a ) = a ( a 1 ) cos 2 θ
    31.16.3 A 0 = n ! ( γ + δ ) n 𝐻𝑝 n , m ( 1 ) , Q 0 A 0 + R 0 A 1 = 0

    Originally x , y were incorrectly defined by the set of equations (31.16.2), given previously as “ x = sin 2 θ cos 2 ϕ ,   y = sin 2 θ sin 2 ϕ ”. In fact, x , y are implicitly defined by the corrected set of equations. In (31.16.3), the initial data A 0 , previously missing, has now been included.

  • 9: Bibliography M
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • J. Martinek, H. P. Thielman, and E. C. Huebschman (1966) On the zeros of cross-product Bessel functions. J. Math. Mech. 16, pp. 447–452.
  • L. C. Maximon (1991) On the evaluation of the integral over the product of two spherical Bessel functions. J. Math. Phys. 32 (3), pp. 642–648.
  • R. Mehrem, J. T. Londergan, and M. H. Macfarlane (1991) Analytic expressions for integrals of products of spherical Bessel functions. J. Phys. A 24 (7), pp. 1435–1453.