About the Project

Heun operator

AdvancedHelp

(0.001 seconds)

6 matching pages

1: 31.10 Integral Equations and Representations
β–Ί
31.10.3 ( π’Ÿ z π’Ÿ t ) ⁒ 𝒦 = 0 ,
β–Ίwhere π’Ÿ z is Heun’s operator in the variable z : β–Ί
31.10.4 π’Ÿ z = z ⁒ ( z 1 ) ⁒ ( z a ) ⁒ ( 2 / z 2 ) + ( Ξ³ ⁒ ( z 1 ) ⁒ ( z a ) + Ξ΄ ⁒ z ⁒ ( z a ) + Ο΅ ⁒ z ⁒ ( z 1 ) ) ⁒ ( / z ) + Ξ± ⁒ Ξ² ⁒ z .
β–Ί
31.10.14 ( ( t z ) ⁒ π’Ÿ s + ( z s ) ⁒ π’Ÿ t + ( s t ) ⁒ π’Ÿ z ) ⁒ 𝒦 = 0 ,
2: 31.17 Physical Applications
§31.17 Physical Applications
β–Ί
§31.17(i) Addition of Three Quantum Spins
β–Ί
§31.17(ii) Other Applications
β–ΊFor applications of Heun’s equation and functions in astrophysics see Debosscher (1998) where different spectral problems for Heun’s equation are also considered. …
3: Bibliography D
β–Ί
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • β–Ί
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • β–Ί
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • β–Ί
  • N. Dunford and J. T. Schwartz (1988) Linear operators. Part II. Wiley Classics Library, John Wiley & Sons, Inc., New York.
  • β–Ί
  • C. F. Dunkl (1989) Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311 (1), pp. 167–183.
  • 4: Bibliography R
    β–Ί
  • M. Reed and B. Simon (1978) Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators. Academic Press, New York.
  • β–Ί
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • β–Ί
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.
  • β–Ί
  • G. Rota, D. Kahaner, and A. Odlyzko (1973) On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, pp. 684–760.
  • β–Ί
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 5: Bibliography L
    β–Ί
  • V. LaΔ­ (1994) The two-point connection problem for differential equations of the Heun class. Teoret. Mat. Fiz. 101 (3), pp. 360–368 (Russian).
  • β–Ί
  • L. Lapointe and L. Vinet (1996) Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (2), pp. 425–452.
  • β–Ί
  • W. Lay, K. Bay, and S. Yu. Slavyanov (1998) Asymptotic and numeric study of eigenvalues of the double confluent Heun equation. J. Phys. A 31 (42), pp. 8521–8531.
  • β–Ί
  • W. Lay and S. Yu. Slavyanov (1998) The central two-point connection problem for the Heun class of ODEs. J. Phys. A 31 (18), pp. 4249–4261.
  • β–Ί
  • W. Lay and S. Yu. Slavyanov (1999) Heun’s equation with nearby singularities. Proc. Roy. Soc. London Ser. A 455, pp. 4347–4361.
  • 6: Errata
    β–ΊThis especially included updated information on matrix analysis, measure theory, spectral analysis, and a new section on linear second order differential operators and eigenfunction expansions. … β–ΊThe specific updates to Chapter 1 include the addition of an entirely new subsection §1.18 entitled “Linear Second Order Differential Operators and Eigenfunction Expansions” which is a survey of the formal spectral analysis of second order differential operators. The spectral theory of these operators, based on Sturm-Liouville and Liouville normal forms, distribution theory, is now discussed more completely, including linear algebra, matrices, matrices as linear operators, orthonormal expansions, Stieltjes integrals/measures, generating functions. … β–Ί
  • Equations (31.3.10), (31.3.11)
    31.3.10 z Ξ± ⁒ H ⁒ β„“ ⁑ ( 1 a , q a Ξ± ⁒ ( Ξ² Ο΅ ) Ξ± a ⁒ ( Ξ² Ξ΄ ) ; Ξ± , Ξ± Ξ³ + 1 , Ξ± Ξ² + 1 , Ξ΄ ; 1 z )
    31.3.11 z Ξ² ⁒ H ⁒ β„“ ⁑ ( 1 a , q a Ξ² ⁒ ( Ξ± Ο΅ ) Ξ² a ⁒ ( Ξ± Ξ΄ ) ; Ξ² , Ξ² Ξ³ + 1 , Ξ² Ξ± + 1 , Ξ΄ ; 1 z )

    In both equations, the second entry in the H ⁒ β„“ has been corrected with an extra minus sign.

  • β–Ί
  • Subsections 1.15(vi), 1.15(vii), 2.6(iii)

    A number of changes were made with regard to fractional integrals and derivatives. In §1.15(vi) a reference to Miller and Ross (1993) was added, the fractional integral operator of order Ξ± was more precisely identified as the Riemann-Liouville fractional integral operator of order Ξ± , and a paragraph was added below (1.15.50) to generalize (1.15.47). In §1.15(vii) the sentence defining the fractional derivative was clarified. In §2.6(iii) the identification of the Riemann-Liouville fractional integral operator was made consistent with §1.15(vi).