About the Project

Herglotz generating function

AdvancedHelp

(0.003 seconds)

31—40 of 957 matching pages

31: 35.1 Special Notation
(For other notation see Notation for the Special Functions.) …
a , b complex variables.
The main functions treated in this chapter are the multivariate gamma and beta functions, respectively Γ m ( a ) and B m ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A ν ( 𝐓 ) and (of the second kind) B ν ( 𝐓 ) ; confluent hypergeometric (of the first kind) F 1 1 ( a ; b ; 𝐓 ) or F 1 1 ( a b ; 𝐓 ) and (of the second kind) Ψ ( a ; b ; 𝐓 ) ; Gaussian hypergeometric F 1 2 ( a 1 , a 2 ; b ; 𝐓 ) or F 1 2 ( a 1 , a 2 b ; 𝐓 ) ; generalized hypergeometric F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) or F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) . An alternative notation for the multivariate gamma function is Π m ( a ) = Γ m ( a + 1 2 ( m + 1 ) ) (Herz (1955, p. 480)). Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
32: 30.11 Radial Spheroidal Wave Functions
§30.11 Radial Spheroidal Wave Functions
§30.11(i) Definitions
Connection Formulas
§30.11(ii) Graphics
§30.11(iv) Wronskian
33: 28.12 Definitions and Basic Properties
§28.12 Definitions and Basic Properties
§28.12(ii) Eigenfunctions me ν ( z , q )
If q is a normal value of the corresponding equation (28.2.16), then these functions are uniquely determined as analytic functions of z and q by the normalization …
34: 1.16 Distributions
§1.16(i) Test Functions
Λ : 𝒟 ( I ) is called a distribution, or generalized function, if it is a continuous linear functional on 𝒟 ( I ) , that is, it is a linear functional and for every ϕ n ϕ in 𝒟 ( I ) , …
§1.16(iv) Heaviside Function
35: 16.17 Definition
§16.17 Definition
Then the Meijer G -function is defined via the Mellin–Barnes integral representation: …
Figure 16.17.1: s-plane. Path L for the integral representation (16.17.1) of the Meijer G -function.
When more than one of Cases (i), (ii), and (iii) is applicable the same value is obtained for the Meijer G -function. … Then …
36: 35.5 Bessel Functions of Matrix Argument
§35.5 Bessel Functions of Matrix Argument
§35.5(i) Definitions
§35.5(ii) Properties
§35.5(iii) Asymptotic Approximations
For asymptotic approximations for Bessel functions of matrix argument, see Herz (1955) and Butler and Wood (2003).
37: 22.2 Definitions
§22.2 Definitions
As a function of z , with fixed k , each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real. … … The Jacobian functions are related in the following way. … In terms of Neville’s theta functions20.1) …
38: 21.2 Definitions
§21.2(i) Riemann Theta Functions
θ ( 𝐳 | 𝛀 ) is also referred to as a theta function with g components, a g -dimensional theta function or as a genus g theta function. …
§21.2(ii) Riemann Theta Functions with Characteristics
This function is referred to as a Riemann theta function with characteristics [ 𝜶 𝜷 ] . …
§21.2(iii) Relation to Classical Theta Functions
39: 35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6(i) Definitions
Laguerre Form
§35.6(ii) Properties
§35.6(iii) Relations to Bessel Functions of Matrix Argument
40: 35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7(i) Definition
Jacobi Form
Confluent Form
Integral Representation