About the Project

Heine%20transformations%20%28first%2C%20second%2C%20third%29

AdvancedHelp

(0.014 seconds)

1—10 of 858 matching pages

1: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
2: 14.28 Sums
where the branches of the square roots have their principal values when z 1 , z 2 ( 1 , ) and are continuous when z 1 , z 2 ( 0 , 1 ] . …
§14.28(ii) Heine’s Formula
where 1 and 2 are ellipses with foci at ± 1 , 2 being properly interior to 1 . The series converges uniformly for z 1 outside or on 1 , and z 2 within or on 2 . For generalizations in terms of Gegenbauer and Jacobi polynomials, see Theorem 2. …
3: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • R. Vidūnas (2005) Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 4: 28 Mathieu Functions and Hill’s Equation
    Chapter 28 Mathieu Functions and Hill’s Equation
    5: 20 Theta Functions
    Chapter 20 Theta Functions
    6: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 7: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 8: 18.11 Relations to Other Functions
    18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
    For the Ferrers function 𝖯 n m ( x ) , see §14.3(i). …
    §18.11(ii) Formulas of Mehler–Heine Type
    18.11.5 lim n 1 n α P n ( α , β ) ( 1 z 2 2 n 2 ) = lim n 1 n α P n ( α , β ) ( cos z n ) = 2 α z α J α ( z ) .
    18.11.6 lim n 1 n α L n ( α ) ( z n ) = 1 z 1 2 α J α ( 2 z 1 2 ) .
    9: 17.6 ϕ 1 2 Function
    Heine’s First Transformation
    Heine’s Second Tranformation
    Heine’s Third Transformation
    Fine’s Second Transformation
    Heine’s Contiguous Relations
    10: 19.36 Methods of Computation
    §19.36(ii) Quadratic Transformations
    Thompson (1997, pp. 499, 504) uses descending Landen transformations for both F ( ϕ , k ) and E ( ϕ , k ) . … The function el2 ( x , k c , a , b ) is computed by descending Landen transformations if x is real, or by descending Gauss transformations if x is complex (Bulirsch (1965b)). … Bulirsch (1969a, b) extend Bartky’s transformation to el3 ( x , k c , p ) by expressing it in terms of the first incomplete integral, a complete integral of the third kind, and a more complicated integral to which Bartky’s method can be applied. … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …