Heine transformations (first, second, third)
(0.004 seconds)
1—10 of 507 matching pages
1: 1.14 Integral Transforms
§1.14 Integral Transforms
►§1.14(i) Fourier Transform
… ►§1.14(iii) Laplace Transform
… ►Fourier Transform
… ►Laplace Transform
…2: 14.28 Sums
3: Bibliography V
…
►
A Fortran computer program for calculating the oblate spheroidal radial functions of the first and second kind and their first derivatives.
NRL Report No. 6959
Naval Res. Lab. Washingtion, D.C..
…
►
Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives.
Quart. Appl. Math. 62 (3), pp. 493–507.
…
►
On the series expansion method for computing incomplete elliptic integrals of the first and second kinds.
Math. Comp. 23 (105), pp. 61–69.
…
►
Transformations of some Gauss hypergeometric functions.
J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
…
►
Expansions in products of Heine-Stieltjes polynomials.
Constr. Approx. 15 (4), pp. 467–480.
…
4: 17.6 Function
…
►
Heine’s First Transformation
… ►Heine’s Second Tranformation
… ►Heine’s Third Transformation
… ►Fine’s First Transformation
… ►Heine’s Contiguous Relations
…5: 10.1 Special Notation
…
►The main functions treated in this chapter are the Bessel functions , ; Hankel functions , ; modified Bessel functions , ; spherical Bessel functions , , , ; modified spherical Bessel functions , , ; Kelvin functions , , , .
…
►Abramowitz and Stegun (1964): , , , , for , , , , respectively, when .
►Jeffreys and Jeffreys (1956): for , for , for .
►Whittaker and Watson (1927): for .
►For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
6: 14.12 Integral Representations
7: 18.11 Relations to Other Functions
…
►
18.11.1
.
►For the Ferrers function , see §14.3(i).
…
►
§18.11(ii) Formulas of Mehler–Heine Type
… ►
18.11.5
…
►
18.11.6
…
8: 19.7 Connection Formulas
…
►
§19.7(i) Complete Integrals of the First and Second Kinds
… ►Reciprocal-Modulus Transformation
… ►Imaginary-Modulus Transformation
… ►Imaginary-Argument Transformation
… ►For two further transformations of this type see Erdélyi et al. (1953b, p. 316). …9: 17.9 Further Transformations of Functions
§17.9 Further Transformations of Functions
… ►F. H. Jackson’s Transformations
… ►Transformations of -Series
… ►Sears–Carlitz Transformation
… ►Mixed-Base Heine-Type Transformations
…10: 10.42 Zeros
…
►Properties of the zeros of and may be deduced from those of and , respectively, by application of the transformations (10.27.6) and (10.27.8).
►For example, if is real, then the zeros of are all complex unless for some positive integer , in which event has two real zeros.
…
►
has no zeros in the sector ; this result remains true when is replaced by any real number .
For the number of zeros of in the sector , when is real, see Watson (1944, pp. 511–513).
►For -zeros of , with complex , see Ferreira and Sesma (2008).
…