About the Project
NIST

Hankel transform

AdvancedHelp

(0.001 seconds)

11—20 of 24 matching pages

11: Bibliography H
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • 12: Bibliography
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • 13: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • 14: Bibliography S
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • 15: Bibliography B
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • 16: 1.14 Integral Transforms
    §1.14 Integral Transforms
    17: 3.5 Quadrature
    Other contour integrals occur in standard integral transforms or their inverses, for example, Hankel transforms10.22(v)), Kontorovich–Lebedev transforms10.43(v)), and Mellin transforms1.14(iv)). …
    18: 3.9 Acceleration of Convergence
    §3.9(i) Sequence Transformations
    §3.9(ii) Euler’s Transformation of Series
    §3.9(iv) Shanks’ Transformation
    where H m is the Hankel determinant
    §3.9(vi) Applications and Further Transformations
    19: 10.42 Zeros
    Properties of the zeros of I ν ( z ) and K ν ( z ) may be deduced from those of J ν ( z ) and H ν ( 1 ) ( z ) , respectively, by application of the transformations (10.27.6) and (10.27.8). …
    20: Bibliography R
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.