About the Project

Hankel expansions

AdvancedHelp

(0.002 seconds)

11—20 of 34 matching pages

11: 10.22 Integrals
For asymptotic expansions of Hankel transforms see Wong (1976, 1977), Frenzen and Wong (1985a) and Galapon and Martinez (2014). …
12: 10.8 Power Series
When ν is not an integer the corresponding expansions for Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8). …
13: Bibliography C
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • 14: 10.23 Sums
    For collections of sums of series involving Bessel or Hankel functions see Erdélyi et al. (1953b, §7.15), Gradshteyn and Ryzhik (2000, §§8.51–8.53), Hansen (1975), Luke (1969b, §9.4), Prudnikov et al. (1986b, pp. 651–691 and 697–700), and Wheelon (1968, pp. 48–51).
    15: 10.43 Integrals
    For further properties of the Bickley function, including asymptotic expansions and generalizations, see Amos (1983c, 1989) and Luke (1962, Chapter 8). … For asymptotic expansions of the direct transform (10.43.30) see Wong (1981), and for asymptotic expansions of the inverse transform (10.43.31) see Naylor (1990, 1996). …
    16: 10.74 Methods of Computation
    The power-series expansions given in §§10.2 and 10.8, together with the connection formulas of §10.4, can be used to compute the Bessel and Hankel functions when the argument x or z is sufficiently small in absolute value. …
    17: 10.57 Uniform Asymptotic Expansions for Large Order
    Asymptotic expansions for 𝗃 n ( ( n + 1 2 ) z ) , 𝗒 n ( ( n + 1 2 ) z ) , 𝗁 n ( 1 ) ( ( n + 1 2 ) z ) , 𝗁 n ( 2 ) ( ( n + 1 2 ) z ) , 𝗂 n ( 1 ) ( ( n + 1 2 ) z ) , and 𝗄 n ( ( n + 1 2 ) z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). …
    18: Bibliography J
  • U. D. Jentschura and E. Lötstedt (2012) Numerical calculation of Bessel, Hankel and Airy functions. Computer Physics Communications 183 (3), pp. 506–519.
  • A. J. Jerri (1982) A note on sampling expansion for a transform with parabolic cylinder kernel. Inform. Sci. 26 (2), pp. 155–158.
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • H. K. Johansen and K. Sørensen (1979) Fast Hankel transforms. Geophysical Prospecting 27 (4), pp. 876–901.
  • S. Jorna and C. Springer (1971) Derivation of Green-type, transitional and uniform asymptotic expansions from differential equations. V. Angular oblate spheroidal wavefunctions p s ¯ n r ( η , h ) and q s ¯ n r ( η , h ) for large h . Proc. Roy. Soc. London Ser. A 321, pp. 545–555.
  • 19: 10.21 Zeros
    Zeros of H n ( 1 ) ( n z ) , H n ( 2 ) ( n z ) , H n ( 1 ) ( n z ) , H n ( 2 ) ( n z )
    The first set of zeros of the principal value of H n ( 1 ) ( n z ) is an infinite string with asymptote z = i d / n , where … The zeros of H n ( 1 ) ( n z ) have a similar pattern to those of H n ( 1 ) ( n z ) . The zeros of H n ( 2 ) ( n z ) and H n ( 2 ) ( n z ) are the complex conjugates of the zeros of H n ( 1 ) ( n z ) and H n ( 1 ) ( n z ) , respectively. …
    20: Bibliography F
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • C. L. Frenzen and R. Wong (1985a) A note on asymptotic evaluation of some Hankel transforms. Math. Comp. 45 (172), pp. 537–548.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.