About the Project

Hankel

AdvancedHelp

(0.001 seconds)

11—20 of 73 matching pages

11: 10.3 Graphics
§10.3(ii) Real Order, Complex Variable
See accompanying text
Figure 10.3.10: H 0 ( 1 ) ( x + i y ) , 10 x 5 , 2.8 y 4 . … Magnify 3D Help
See accompanying text
Figure 10.3.12: H 1 ( 1 ) ( x + i y ) , 10 x 5 , 2.8 y 4 . … Magnify 3D Help
See accompanying text
Figure 10.3.14: H 5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
See accompanying text
Figure 10.3.16: H 5.5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
12: 10.8 Power Series
§10.8 Power Series
When ν is not an integer the corresponding expansions for Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8). … The corresponding results for H n ( 1 ) ( z ) and H n ( 2 ) ( z ) are obtained via (10.4.3) with ν = n . …
13: 11.1 Special Notation
For the functions J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) , I ν ( z ) , and K ν ( z ) see §§10.2(ii), 10.25(ii). …
14: 10.17 Asymptotic Expansions for Large Argument
§10.17(i) Hankel’s Expansions
§10.17(iii) Error Bounds for Real Argument and Order
§10.17(v) Exponentially-Improved Expansions
For higher re-expansions of the remainder terms see Olde Daalhuis and Olver (1995a) and Olde Daalhuis (1995, 1996).
15: 10.76 Approximations
§10.76(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions
16: 10.74 Methods of Computation
For evaluation of the Hankel functions H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) for complex values of ν and z based on the integral representations (10.9.18) see Remenets (1973). …
§10.74(vi) Zeros and Associated Values
Hankel Transform
The spherical Bessel transform is the Hankel transform (10.22.76) in the case when ν is half an odd positive integer. …
17: 10.19 Asymptotic Expansions for Large Order
§10.19 Asymptotic Expansions for Large Order
§10.19(i) Asymptotic Forms
§10.19(iii) Transition Region
See also §10.20(i).
18: 10.27 Connection Formulas
10.27.8 K ν ( z ) = { 1 2 π i e ν π i / 2 H ν ( 1 ) ( z e π i / 2 ) , π ph z 1 2 π , 1 2 π i e ν π i / 2 H ν ( 2 ) ( z e π i / 2 ) , 1 2 π ph z π .
19: 10.50 Wronskians and Cross-Products
𝒲 { 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) } = 2 i z 2 .
20: 10.54 Integral Representations
𝗁 n ( 1 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t ,
𝗁 n ( 2 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t , | ph z | < 1 2 π .