About the Project

Hankel functions

AdvancedHelp

(0.003 seconds)

1—10 of 72 matching pages

1: 10.1 Special Notation
The main functions treated in this chapter are the Bessel functions J ν ( z ) , Y ν ( z ) ; Hankel functions H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) ; modified Bessel functions I ν ( z ) , K ν ( z ) ; spherical Bessel functions 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) ; Kelvin functions ber ν ( x ) , bei ν ( x ) , ker ν ( x ) , kei ν ( x ) . … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
2: 10.76 Approximations
§10.76(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions
3: 10.4 Connection Formulas
§10.4 Connection Formulas
10.4.7 H ν ( 1 ) ( z ) = i csc ( ν π ) ( e ν π i J ν ( z ) J ν ( z ) ) = csc ( ν π ) ( Y ν ( z ) e ν π i Y ν ( z ) ) ,
10.4.8 H ν ( 2 ) ( z ) = i csc ( ν π ) ( J ν ( z ) e ν π i J ν ( z ) ) = csc ( ν π ) ( Y ν ( z ) e ν π i Y ν ( z ) ) .
4: 10.5 Wronskians and Cross-Products
§10.5 Wronskians and Cross-Products
10.5.3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) ,
10.5.4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) J ν ( z ) H ν + 1 ( 2 ) ( z ) = 2 i / ( π z ) ,
10.5.5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = 4 i / ( π z ) .
5: 10.11 Analytic Continuation
§10.11 Analytic Continuation
10.11.3 sin ( ν π ) H ν ( 1 ) ( z e m π i ) = sin ( ( m 1 ) ν π ) H ν ( 1 ) ( z ) e ν π i sin ( m ν π ) H ν ( 2 ) ( z ) ,
10.11.4 sin ( ν π ) H ν ( 2 ) ( z e m π i ) = e ν π i sin ( m ν π ) H ν ( 1 ) ( z ) + sin ( ( m + 1 ) ν π ) H ν ( 2 ) ( z ) .
6: 10.2 Definitions
§10.2(i) Bessel’s Equation
Bessel Functions of the Third Kind (Hankel Functions)
10.2.5 H ν ( 1 ) ( z ) 2 / ( π z ) e i ( z 1 2 ν π 1 4 π )
Branch Conventions
7: 10.16 Relations to Other Functions
H 1 2 ( 2 ) ( z ) = i H 1 2 ( 2 ) ( z ) = i ( 2 π z ) 1 2 e i z .
Confluent Hypergeometric Functions
10.16.6 H ν ( 1 ) ( z ) H ν ( 2 ) ( z ) } = 2 π 1 2 i e ν π i ( 2 z ) ν e ± i z U ( ν + 1 2 , 2 ν + 1 , 2 i z ) .
8: 9.6 Relations to Other Functions
§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions
9.6.6 Ai ( z ) = ( z / 3 ) ( J 1 / 3 ( ζ ) + J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) ,
9.6.7 Ai ( z ) = ( z / 3 ) ( J 2 / 3 ( ζ ) J 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) = 1 2 ( z / 3 ) ( e 5 π i / 6 H 2 / 3 ( 1 ) ( ζ ) + e 5 π i / 6 H 2 / 3 ( 2 ) ( ζ ) ) ,
§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions
9.6.20 H 2 / 3 ( 2 ) ( ζ ) = e 2 π i / 3 H 2 / 3 ( 2 ) ( ζ ) = e π i / 6 ( 3 / z ) ( Ai ( z ) + i Bi ( z ) ) .
9: 15.14 Integrals
Hankel transforms of hypergeometric functions are given in Oberhettinger (1972, §1.17) and Erdélyi et al. (1954b, §8.17). …
10: 10.74 Methods of Computation
The power-series expansions given in §§10.2 and 10.8, together with the connection formulas of §10.4, can be used to compute the Bessel and Hankel functions when the argument x or z is sufficiently small in absolute value. … For z the function H ν ( 1 ) ( z ) , for example, can always be computed in a stable manner in the sector 0 ph z π by integrating along rays towards the origin. … For evaluation of the Hankel functions H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) for complex values of ν and z based on the integral representations (10.9.18) see Remenets (1973). …
§10.74(vi) Zeros and Associated Values