About the Project

Hadamard inequality

AdvancedHelp

(0.001 seconds)

1—10 of 65 matching pages

1: 1.3 Determinants, Linear Operators, and Spectral Expansions
Hadamard’s Inequality
2: Bibliography P
  • R. B. Paris (1984) An inequality for the Bessel function J ν ( ν x ) . SIAM J. Math. Anal. 15 (1), pp. 203–205.
  • R. B. Paris (2001a) On the use of Hadamard expansions in hyperasymptotic evaluation. I. Real variables. Proc. Roy. Soc. London Ser. A 457 (2016), pp. 2835–2853.
  • R. B. Paris (2001b) On the use of Hadamard expansions in hyperasymptotic evaluation. II. Complex variables. Proc. Roy. Soc. London Ser. A 457, pp. 2855–2869.
  • G. Pittaluga and L. Sacripante (1991) Inequalities for the zeros of the Airy functions. SIAM J. Math. Anal. 22 (1), pp. 260–267.
  • 3: 1.7 Inequalities
    §1.7 Inequalities
    Cauchy–Schwarz Inequality
    Minkowski’s Inequality
    Cauchy–Schwarz Inequality
    §1.7(iv) Jensen’s Inequality
    4: Bibliography H
  • J. Hadamard (1896) Sur la distribution des zéros de la fonction ζ ( s ) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, pp. 199–220 (French).
  • G. H. Hardy, J. E. Littlewood, and G. Pólya (1967) Inequalities. 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
  • 5: Edward Neuman
    Neuman has published several papers on approximations and expansions, special functions, and mathematical inequalities. …
    6: 4.32 Inequalities
    §4.32 Inequalities
    For these and other inequalities involving hyperbolic functions see Mitrinović (1964, pp. 61, 76, 159) and Mitrinović (1970, p. 270).
    7: 6.8 Inequalities
    §6.8 Inequalities
    8: Bibliography Q
  • F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
  • F. Qi (2008) A new lower bound in the second Kershaw’s double inequality. J. Comput. Appl. Math. 214 (2), pp. 610–616.
  • 9: 10.37 Inequalities; Monotonicity
    §10.37 Inequalities; Monotonicity
    For sharper inequalities when the variables are real see Paris (1984) and Laforgia (1991). …
    10: 18.14 Inequalities
    §18.14 Inequalities
    Legendre
    Jacobi
    Szegő–Szász Inequality