About the Project

Gegenbauer%20addition%20theorem

AdvancedHelp

(0.003 seconds)

1—10 of 259 matching pages

1: 10.44 Sums
§10.44(i) Multiplication Theorem
§10.44(ii) Addition Theorems
Neumann’s Addition Theorem
Graf’s and Gegenbauer’s Addition Theorems
2: 10.23 Sums
§10.23(ii) Addition Theorems
Neumann’s Addition Theorem
Graf’s and Gegenbauer’s Addition Theorems
where C k ( ν ) ( cos α ) is Gegenbauer’s polynomial (§18.3). …
3: Bibliography K
  • E. G. Kalnins and W. Miller (1993) Orthogonal Polynomials on n -spheres: Gegenbauer, Jacobi and Heun. In Topics in Polynomials of One and Several Variables and their Applications, pp. 299–322.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 4: 18.18 Sums
    §18.18(ii) Addition Theorems
    Ultraspherical
    Legendre
    Laguerre
    Hermite
    5: 20 Theta Functions
    Chapter 20 Theta Functions
    6: 28.27 Addition Theorems
    §28.27 Addition Theorems
    Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. They are analogous to the addition theorems for Bessel functions (§10.23(ii)) and modified Bessel functions (§10.44(ii)). …
    7: 18.1 Notation
  • Ultraspherical (or Gegenbauer): C n ( λ ) ( x ) .

  • Associated OP’s are denoted via addition of the letter c at the end of the listing of parameters in their usual notations.

  • In Szegő (1975, §4.7) the ultraspherical polynomials C n ( λ ) ( x ) are denoted by P n ( λ ) ( x ) . The ultraspherical polynomials will not be considered for λ = 0 . They are defined in the literature by C 0 ( 0 ) ( x ) = 1 and …
    8: Bibliography C
  • B. C. Carlson (1971) New proof of the addition theorem for Gegenbauer polynomials. SIAM J. Math. Anal. 2, pp. 347–351.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • H. S. Cohl (2013b) On a generalization of the generating function for Gegenbauer polynomials. Integral Transforms Spec. Funct. 24 (10), pp. 807–816.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 9: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • S. C. Dhar (1940) Note on the addition theorem of parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 29–30.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • L. Durand (1975) Nicholson-type Integrals for Products of Gegenbauer Functions and Related Topics. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 353–374. Math. Res. Center, Univ. Wisconsin, Publ. No. 35.
  • 10: 18.10 Integral Representations
    18.10.1 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ cos θ ) α + 1 2 d ϕ , 0 < θ < π , α > 1 2 .
    18.10.4 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) 0 π ( cos θ + i sin θ cos ϕ ) n ( sin ϕ ) 2 α d ϕ , α > 1 2 .
    Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
    p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
    C n ( λ ) ( x ) 1 z 1 ( 1 2 x z + z 2 ) λ 0 e ± i θ outside C (where x = cos θ ).