About the Project

Gegenbauer function

AdvancedHelp

(0.003 seconds)

1—10 of 27 matching pages

1: 14.3 Definitions and Hypergeometric Representations
§14.3(iv) Relations to Other Functions
In terms of the Gegenbauer function C α ( β ) ( x ) and the Jacobi function ϕ λ ( α , β ) ( t ) (§§15.9(iii), 15.9(ii)):
14.3.21 𝖯 ν μ ( x ) = 2 μ Γ ( 1 2 μ ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) Γ ( 1 μ ) ( 1 x 2 ) μ / 2 C ν + μ ( 1 2 μ ) ( x ) .
14.3.22 P ν μ ( x ) = 2 μ Γ ( 1 2 μ ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) Γ ( 1 μ ) ( x 2 1 ) μ / 2 C ν + μ ( 1 2 μ ) ( x ) .
2: 15.9 Relations to Other Functions
Gegenbauer (or Ultraspherical)
§15.9(iii) Gegenbauer Function
15.9.15 C α ( λ ) ( z ) = Γ ( α + 2 λ ) Γ ( 2 λ ) Γ ( α + 1 ) F ( α , α + 2 λ λ + 1 2 ; 1 z 2 ) .
3: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
4 C n ( λ ) ( x ) 1 x 2 ( 2 λ + 1 ) x 0 n ( n + 2 λ )
4: 18.10 Integral Representations
18.10.1 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ cos θ ) α + 1 2 d ϕ , 0 < θ < π , α > 1 2 .
18.10.4 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) 0 π ( cos θ + i sin θ cos ϕ ) n ( sin ϕ ) 2 α d ϕ , α > 1 2 .
5: Errata
  • Chapters 14 Legendre and Related Functions, 15 Hypergeometric Function

    The Gegenbauer function C α ( λ ) ( z ) , was labeled inadvertently as the ultraspherical (Gegenbauer) polynomial C n ( λ ) ( z ) . In order to resolve this inconsistency, this function now links correctly to its definition. This change affects Gegenbauer functions which appear in §§14.3(iv), 15.9(iii).

  • 6: Bibliography D
  • L. Durand (1975) Nicholson-type Integrals for Products of Gegenbauer Functions and Related Topics. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 353–374. Math. Res. Center, Univ. Wisconsin, Publ. No. 35.
  • 7: 18.12 Generating Functions
    18.12.6 Γ ( λ + 1 2 ) e z cos θ ( 1 2 z sin θ ) 1 2 λ J λ 1 2 ( z sin θ ) = n = 0 C n ( λ ) ( cos θ ) ( 2 λ ) n z n , 0 θ π .
    8: 18.15 Asymptotic Approximations
    18.15.10 C n ( λ ) ( cos θ ) = 2 2 λ Γ ( λ + 1 2 ) π 1 2 Γ ( λ + 1 ) ( 2 λ ) n ( λ + 1 ) n ( m = 0 M 1 ( λ ) m ( 1 λ ) m m ! ( n + λ + 1 ) m cos θ n , m ( 2 sin θ ) m + λ + O ( 1 n M ) ) ,
    9: 18.14 Inequalities
    18.14.7 ( n + λ ) 1 λ ( 1 x 2 ) 1 2 λ | C n ( λ ) ( x ) | < 2 1 λ Γ ( λ ) , 1 x 1 , 0 < λ < 1 .
    10: 18.17 Integrals
    18.17.5 C n ( λ ) ( cos θ 1 ) C n ( λ ) ( 1 ) C n ( λ ) ( cos θ 2 ) C n ( λ ) ( 1 ) = Γ ( λ + 1 2 ) π 1 2 Γ ( λ ) 0 π C n ( λ ) ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) C n ( λ ) ( 1 ) ( sin ϕ ) 2 λ 1 d ϕ , λ > 0 .
    18.17.12 Γ ( λ μ ) C n ( λ μ ) ( x 1 2 ) x λ μ + 1 2 n = x Γ ( λ ) C n ( λ ) ( y 1 2 ) y λ + 1 2 n ( y x ) μ 1 Γ ( μ ) d y , λ > μ > 0 , x > 0 ,
    18.17.13 x 1 2 n ( x 1 ) λ + μ 1 2 Γ ( λ + μ + 1 2 ) C n ( λ + μ ) ( x 1 2 ) C n ( λ + μ ) ( 1 ) = 1 x y 1 2 n ( y 1 ) λ 1 2 Γ ( λ + 1 2 ) C n ( λ ) ( y 1 2 ) C n ( λ ) ( 1 ) ( x y ) μ 1 Γ ( μ ) d y , μ > 0 , x > 1 .
    18.17.17 0 1 ( 1 x 2 ) λ 1 2 C 2 n ( λ ) ( x ) cos ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ ) J λ + 2 n ( y ) ( 2 n ) ! Γ ( λ ) ( 2 y ) λ ,
    18.17.18 0 1 ( 1 x 2 ) λ 1 2 C 2 n + 1 ( λ ) ( x ) sin ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ + 1 ) J 2 n + λ + 1 ( y ) ( 2 n + 1 ) ! Γ ( λ ) ( 2 y ) λ .