About the Project
NIST

Gaussian hypergeometric function

AdvancedHelp

(0.002 seconds)

9 matching pages

1: 35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7(i) Definition
Jacobi Form
Confluent Form
Integral Representation
2: 35.10 Methods of Computation
See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on O ( m ) applied to a generalization of the integral (35.5.8). …
3: 35.9 Applications
§35.9 Applications
4: 35.1 Special Notation
a , b complex variables.
The main functions treated in this chapter are the multivariate gamma and beta functions, respectively Γ m ( a ) and B m ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A ν ( T ) and (of the second kind) B ν ( T ) ; confluent hypergeometric (of the first kind) F 1 1 ( a ; b ; T ) or F 1 1 ( a b ; T ) and (of the second kind) Ψ ( a ; b ; T ) ; Gaussian hypergeometric F 1 2 ( a 1 , a 2 ; b ; T ) or F 1 2 ( a 1 , a 2 b ; T ) ; generalized hypergeometric F q p ( a 1 , , a p ; b 1 , , b q ; T ) or F q p ( a 1 , , a p b 1 , , b q ; T ) . … Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( T ) = A ν ( T ) / A ν ( 0 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | S , T ) = | T | ν B ν ( S T ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( T ) = | T | ν B ν ( S T ) (Faraut and Korányi (1994, pp. 357–358)).
5: Bibliography H
  • Y. P. Hsu (1993) Development of a Gaussian hypergeometric function code in complex domains. Internat. J. Modern Phys. C 4 (4), pp. 805–840.
  • 6: Errata
  • Equation (35.7.3)

    Originally the matrix in the argument of the Gaussian hypergeometric function of matrix argument F 1 2 was written with round brackets. This matrix has been rewritten with square brackets to be consistent with the rest of the DLMF.

  • 7: Bibliography G
  • L. Gatteschi (1990) New inequalities for the zeros of confluent hypergeometric functions. In Asymptotic and computational analysis (Winnipeg, MB, 1989), pp. 175–192.
  • W. Gautschi (1983) How and how not to check Gaussian quadrature formulae. BIT 23 (2), pp. 209–216.
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • K. I. Gross and D. St. P. Richards (1991) Hypergeometric functions on complex matrix space. Bull. Amer. Math. Soc. (N.S.) 24 (2), pp. 349–355.
  • 8: Bibliography S
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • I. Shavitt (1963) The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics. In Methods in Computational Physics: Advances in Research and Applications, B. Alder, S. Fernbach, and M. Rotenberg (Eds.), Vol. 2, pp. 1–45.
  • G. Shimura (1982) Confluent hypergeometric functions on tube domains. Math. Ann. 260 (3), pp. 269–302.
  • L. J. Slater (1966) Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 9: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • R. C. Forrey (1997) Computing the hypergeometric function. J. Comput. Phys. 137 (1), pp. 79–100.
  • B. D. Fried and S. D. Conte (1961) The Plasma Dispersion Function: The Hilbert Transform of the Gaussian. Academic Press, London-New York.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.