Gaussian

(0.001 seconds)

1—10 of 30 matching pages

2: 4.44 Other Applications
For applications of generalized exponentials and generalized logarithms to computer arithmetic see §3.1(iv). For an application of the Lambert $W$-function to generalized Gaussian noise see Chapeau-Blondeau and Monir (2002). …
3: 26.21 Tables
It also contains a table of Gaussian polynomials up to $\genfrac{[}{]}{0.0pt}{}{12}{6}_{q}$. …
4: 35.10 Methods of Computation
See Yan (1992) for the ${{}_{1}F_{1}}$ and ${{}_{2}F_{1}}$ functions of matrix argument in the case $m=2$, and Bingham et al. (1992) for Monte Carlo simulation on $\mathbf{O}(m)$ applied to a generalization of the integral (35.5.8). …
5: 32.14 Combinatorics
The distribution function $F(s)$ given by (32.14.2) arises in random matrix theory where it gives the limiting distribution for the normalized largest eigenvalue in the Gaussian Unitary Ensemble of $n\times n$ Hermitian matrices; see Tracy and Widom (1994). …
8: 7.1 Special Notation
The notations $P(z)$, $Q(z)$, and $\Phi(z)$ are used in mathematical statistics, where these functions are called the normal or Gaussian probability functions.
9: 26.9 Integer Partitions: Restricted Number and Part Size
26.9.4 $\genfrac{[}{]}{0.0pt}{}{m}{n}_{q}=\prod_{j=1}^{n}\frac{1-q^{m-n+j}}{1-q^{j}},$ $n\geq 0$,
is the Gaussian polynomial (or $q$-binomial coefficient); see also §§17.2(i)17.2(ii). …
26.9.5 $\sum_{n=0}^{\infty}p_{k}\left(n\right)q^{n}=\prod_{j=1}^{k}\frac{1}{1-q^{j}}=1% +\sum_{m=1}^{\infty}\genfrac{[}{]}{0.0pt}{}{k+m-1}{m}_{q}q^{m},$
26.9.6 $\sum_{n=0}^{\infty}p_{k}\left(\leq m,n\right)q^{n}=\genfrac{[}{]}{0.0pt}{}{m+k% }{k}_{q}.$
26.9.7 $\sum_{m,n=0}^{\infty}p_{k}\left(\leq m,n\right)x^{k}q^{n}=1+\sum_{k=1}^{\infty% }\genfrac{[}{]}{0.0pt}{}{m+k}{k}_{q}x^{k}=\prod_{j=0}^{m}\frac{1}{1-x\,q^{j}}.$
10: 8.24 Physical Applications
The function $\gamma\left(a,x\right)$ appears in: discussions of power-law relaxation times in complex physical systems (Sornette (1998)); logarithmic oscillations in relaxation times for proteins (Metzler et al. (1999)); Gaussian orbitals and exponential (Slater) orbitals in quantum chemistry (Shavitt (1963), Shavitt and Karplus (1965)); population biology and ecological systems (Camacho et al. (2002)). …