About the Project

Gauss–Jacobi formula

AdvancedHelp

(0.004 seconds)

11—17 of 17 matching pages

11: Bibliography I
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail (1986) Asymptotics of the Askey-Wilson and q -Jacobi polynomials. SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 12: 18.38 Mathematical Applications
    If the nodes in a quadrature formula with a positive weight function are chosen to be the zeros of the n th degree OP with the same weight function, and the interval of orthogonality is the same as the integration range, then the weights in the quadrature formula can be chosen in such a way that the formula is exact for all polynomials of degree not exceeding 2 n 1 . … The Askey–Gasper inequality …For the generalized hypergeometric function F 2 3 see (16.2.1). … The 3 j symbol (34.2.6), with an alternative expression as a terminating F 2 3 of unit argument, can be expressed in terms of Hahn polynomials (18.20.5) or, by (18.21.1), dual Hahn polynomials. … See Koornwinder (2007a, (3.13), (4.9), (4.10)) for explicit formulas. …
    13: Bibliography K
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • T. H. Koornwinder (1974) Jacobi polynomials. II. An analytic proof of the product formula. SIAM J. Math. Anal. 5, pp. 125–137.
  • T. H. Koornwinder (1975b) Jacobi polynomials. III. An analytic proof of the addition formula. SIAM. J. Math. Anal. 6, pp. 533–543.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • 14: 18.17 Integrals
    Jacobi
    For formulas for Jacobi and Laguerre polynomials analogous to (18.17.5) and (18.17.6), see Koornwinder (1974, 1977). … For similar formulas for ultraspherical polynomials see Durand (1975), and for Jacobi and Laguerre polynomials see Durand (1978). …
    Jacobi
    Jacobi
    15: 18.26 Wilson Class: Continued
    Wilson Jacobi
    18.26.7 lim t W n ( 1 2 ( 1 x ) t 2 ; 1 2 α + 1 2 , 1 2 α + 1 2 , 1 2 β + 1 2 + i t , 1 2 β + 1 2 i t ) t 2 n n ! = P n ( α , β ) ( x ) .
    See Koekoek et al. (2010, Chapter 9) for further formulas. … For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). …
    16: 18.2 General Orthogonal Polynomials
    §18.2(v) Christoffel–Darboux Formula
    Confluent Form
    For usage of the zeros of an OP in Gauss quadrature see §3.5(v). …
    Degree lowering and raising differentiation formulas and structure relations
    17: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • H. S. Cohl, J. Park, and H. Volkmer (2021) Gauss hypergeometric representations of the Ferrers function of the second kind. SIGMA Symmetry Integrability Geom. Methods Appl. 17, pp. Paper 053, 33.
  • R. Cools (2003) An encyclopaedia of cubature formulas. J. Complexity 19 (3), pp. 445–453.
  • D. A. Cox (1984) The arithmetic-geometric mean of Gauss. Enseign. Math. (2) 30 (3-4), pp. 275–330.
  • D. A. Cox (1985) Gauss and the arithmetic-geometric mean. Notices Amer. Math. Soc. 32 (2), pp. 147–151.